【導讀】的直線,與正方體表面相交于M,N設BP=x,(Ⅱ)求二面角F-BE-D的余弦值;(Ⅲ)設點M是線段BD上一個動點,AM//平面BEF,并證明你的結論.
【總結】;菲華論壇;在西墎城,要小心壹點.壹旦有人對付烈焰,你就立刻帶著所有烈焰の人,進入鞠氏宅院.”鞠言對高鳳說道.“嗯,俺明白.”高鳳點頭.她也想跟著鞠言壹起走,但是,她不能將整個烈焰商會扔下.至于帶著烈焰の所有人跟鞠言走,那就更不可能了.“事不宜遲,鞠言,俺們立刻返回藍曲郡城.”鄒尚云揮手說道.兩人當即,便離開西墎
2025-08-04 23:24
【總結】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識網(wǎng)絡 一、經(jīng)典例題剖析 考點一點線面的位置關系 1、設l是直線,a,β是兩個不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
2024-11-16 23:04
【總結】立體幾何中探索性問題的向量解法近幾年的高考對新課程增加的新內容的考查形式和要求已經(jīng)發(fā)生重大變化,向量、導數(shù)等內容已經(jīng)由解決問題的輔助地位上升為分析問題和解決問題時必不可少的工具,成為綜合運用數(shù)學知識、多角度展開解題思路的重要命題素材。高考試卷中立體幾何試題不斷出現(xiàn)了一批具有探究性、開放性的試題,對這些試題的研究不難發(fā)現(xiàn),如果靈活的運用平面向量和空間向量知識來探求這類問題,將是更好的形與數(shù)的結
2024-10-04 15:35
【總結】立體幾何中的向量方法—求空間角?立體幾何這一考點在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們全力爭取力求滿分的題目。主要考查三視圖問題,點線面位置關系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對于角度問題,一直是一個難點。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
2025-06-16 12:13
【總結】立體幾何中的探索性問題立體幾何中的探索性問題主要是對平行、垂直關系的探究,對條件和結論不完備的開放性問題的探究.這類試題的一般設問方式是“是否存在?存在給出證明,不存在說明理由”.解決這類試題,一般根據(jù)探索性問題的設問,首先假設其存在,然后在這個假設下進行推理論證,如果通過推理得到了合乎情理的結論就肯定假設,如果得到了矛盾就否定假設.8如圖,
2025-03-25 06:43
【總結】空間距離問題(專注高三數(shù)學輔導:QQ1550869062)空間中距離的求法是歷年高考考查的重點,其中以點與點、點到線、點到面的距離為基礎,求其他幾種距離一般化歸為這三種距離.●難點磁場(★★★★)如圖,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q是PA的中點.求:(1)Q到BD的距離;(2)P到平面BQ
2025-03-25 06:44
【總結】定西師范高等??茖W校10級數(shù)學系畢業(yè)論文開題報告專業(yè)班級:數(shù)學教育四班姓名:指導教師:一論文題目:向量在立體幾何中教與學的探究二選題依據(jù):向量既是“代數(shù)”的,又是“幾何”的,向量從運算的角度促進了代數(shù)和幾何的聯(lián)系,也促進了“數(shù)”與“型”的結合,所以整體把握知
2025-02-26 04:53
【總結】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關鍵在于找出平面內的一條直線
2025-07-18 00:17
【總結】立體幾何專題之二面角問題北京大學光華管理學院何洋立體幾何高考情況簡述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問題高考情況簡述?除2022年北京
2025-07-20 07:01
【總結】1用空間向量處理立體幾何的問題立體幾何著重的是研究點、線、面之間的關系,研究空間三種位置關系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計算。自上海高考試卷內容改革以來,純粹用立體幾何的公理、定理來證明或計算立體幾何問題越來越少,而借助于向量的計算方法來處理立體幾何的問題卻越來越多。本講座就是詳細
2024-09-05 17:12
【總結】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結果“翻譯”成相應的幾何意義。(化為向量問題)(進行向量運
2024-11-12 01:34
【總結】ZPZ空間“角度”問題設直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復習引入①方向向量法將二面角轉化為二面角的兩個面的
2025-08-05 10:54
【總結】一、復習用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結果“翻譯”成相應的幾何意義。(化為向量問題)(進行向量運算)(
2024-11-09 03:30
【總結】[備考方向要明了]考什么怎么考.、直線與平面、平面與平面的垂直、平行關系.(包括三垂線定理).、直線與平面、平面與平面的夾角的計算問題.了解向量方法在研究立體幾何問題中的應用.,而平面法向量則多滲透在解答題中考查.、面位置關系,在高考有所體現(xiàn),如2012年陜西T18,可用向量法證明.,多以解答題形式考查,并且作為解答題的第二種方法考查,
2025-06-25 00:21
【總結】分類突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、