【總結】【課堂新坐標】(教師用書)2021-2021學年高中數學計數應用題課后知能檢測蘇教版選修2-3一、填空題1.(2021·鎮(zhèn)江高二檢測)從黃瓜、白菜、油菜、扁豆4種蔬菜品種中選出3種,分別種在不同土質的三塊土地上,其中黃瓜必須種植,不同的種植方法共有________種.【解析】C23A33=18(種
2024-12-05 03:08
【總結】 第二章 概 率 §1 離散型隨機變量及其分布列 備課資源參考 教學建議 ,常與后面將要學到的隨機變量的期望與方差結合在一起進行考查. ,難點是準確求出隨機變量ξ取相應值時的概率. ...
2025-04-03 03:24
【總結】章末復習課本課時欄目開關畫一畫研一研章末復習課畫一畫·知識網絡、結構更完善本課時欄目開關畫一畫研一研章末復習課研一研·題型解法、解題更高效題型一兩個計數原理的應用基本原理提供了“完成某件事情”是“分類”進行,還是“分
2024-12-04 21:32
【總結】§超幾何分布一、基礎過關1.在100張獎券中,有4張能中獎,從中任取2張,則2張都能中獎的概率是________.2.從一副不含大、小王的52張撲克牌中任意抽出5張,則至少有3張是A的概率為________.(用式子表示)3.在含有5件次品的20件產品中,任取4件,
2024-12-08 20:17
【總結】§組合(一)一、基礎過關1.下列計算結果為21的是________.(填序號)①A24+C26②C77③A27④C272.下面幾個問題中屬于組合問題的是____.(填序號)①由1,2,3,4構成的雙元素集合;②5個隊進行單循環(huán)足球比賽的分組情況;③由1,2,3構成兩位數的方法
【總結】§回歸分析(二)一、基礎過關1.已知x,y之間的一組數據如下表:xy則y與x之間的線性回歸方程y^=b^x+a^必過點________.2.為了考察兩個變量x和y之間的線性相關性,甲、乙兩個同學各自獨立地做10次和15次試驗,并且
【總結】§二項分布一、基礎過關1.已知隨機變量ξ~B????6,13,則P(ξ=2)=________.2.種植某種樹苗,成活率為5棵,則恰好成活4棵的概率約為________.3.位于坐標原點的一個質點P按下述規(guī)則移動:質點每次移動一個單位,移動的方向為向上或向右,并且向上、向右移動的概率
2024-12-08 07:02
【總結】二項式系數的性質及應用一、基礎過關1.已知(a+b)n的二項展開式中只有第5項的二項式系數最大,則n=________.2.已知??????x+33xn展開式中,各項系數的和與其各項二項式系數的和之比為64,則n=________.3.(x-1)11展開式中x的偶次項系數之和是_______
2024-12-08 05:54
【總結】一、教學目標:進一步學習兩個計數原理,能進步性合理的分類與分步二、重點難點:分類分步的區(qū)分、優(yōu)先法三、教學過程環(huán)節(jié)一【課前達標】1.從甲地到乙地有2條路,從甲地到乙地有2條路;從甲地到丁地有4條路,從丁地到丙地有2條路.(1)則從甲地經乙地到丙地有條路;(2)從甲地到丙地有
2024-11-19 00:41
【總結】離散型隨機變量的方差與標準差一、基礎過關1.下列說法中,正確的是________.(填序號)①離散型隨機變量的均值E(X)反映了X取值的概率平均值;②離散型隨機變量的方差V(X)反映了X取值的平均水平;③離散型隨機變量的均值E(X)反映了X取值的平均水平;④離散型隨機變量的方差V(X)反映了X
2024-12-09 03:38
【總結】第一課件網高二數學(選修2-3)訓練題(全卷滿分100分,考試時間100分鐘)一、選擇題(本大題共8小題,每小題5分,共40分.)(1)在100件產品中,有3件是次品,現從中任意抽取5件,其中至少有2件次品的取法種數為ABCD(2)5個人排成一排,其中甲與乙不相鄰,而丙與丁必須相鄰,
2025-04-04 05:16
【總結】§組合(二)一、基礎過關1.若C7n+1-C7n=C8n,則n=________.2.C03+C14+C25+C36+…+C1720的值為________.(用組合數表示)3.5本不同的書全部分給4名學生,每名學生至少一本,不同的分法種數為________.4.某施工小組有男工7人
【總結】第3章統計案例§獨立性檢驗一、基礎過關1.當χ2時,就有________的把握認為“x與y有關系”.2.在某醫(yī)院,因為患心臟病而住院的665名男性病人中,有214人禿頂;而另外772名不是因為患心臟病而住院的男性病人中有175人禿頂,則χ2≈__________.(結
【總結】§排列(二)一、基礎過關1.把4個不同的黑球,4個不同的紅球排成一排,要求黑球、紅球分別在一起,不同的排法種數是________.2.6個停車位置,有3輛汽車需要停放,若要使3個空位連在一起,則停放的方法總數為________.3.某省有關部門從6人中選4人分別到A、B、C
【總結】§隨機變量的均值和方差離散型隨機變量的均值一、基礎過關1.若隨機變量X的概率分布如下表所示,已知E(X)=,則a-b=________.X0123Pabξ~B????n,12,η~B????n,13,且E(ξ)=15,則E(η)=________.3.籃球運