【總結(jié)】1.【2017浙江,6】已知等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,則“d0”是“S4+S62S5”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】C【考點(diǎn)】等差數(shù)列、充分必要性【名師點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和公式,通過(guò)公式的套入與簡(jiǎn)單運(yùn)算,可知,結(jié)合充分必要性的判斷,若,則是的充
2025-04-17 01:49
【總結(jié)】構(gòu)造等差數(shù)列或等比數(shù)列?由于等差數(shù)列與等比數(shù)列的通項(xiàng)公式顯然,對(duì)于一些遞推數(shù)列問(wèn)題,若能構(gòu)造等差數(shù)列或等比數(shù)列,無(wú)疑是一種行之有效的構(gòu)造方法.?例1?設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為Sn,對(duì)于任意正整數(shù)n,都有等式:成立,求的通項(xiàng)an.?解:,??∴????,
2025-06-24 16:44
【總結(jié)】第一篇:等差數(shù)列、等比數(shù)列的證明及數(shù)列求和 等差數(shù)列、等比數(shù)列的證明 1.已知數(shù)列{an}滿足a1=1,an=3an-1+2n-3(n32),(Ⅰ)求證:數(shù)列{an+n}是等比數(shù)列; (Ⅱ)求數(shù)...
2024-10-12 01:48
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件36《等差數(shù)列與等比數(shù)列的綜合問(wèn)題》課前熱身:30,37,32,35,34,33,36,(),38的特點(diǎn),在括號(hào)內(nèi)適當(dāng)?shù)囊粋€(gè)數(shù)是_____.x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四
2024-11-11 08:49
【總結(jié)】1知識(shí)概括數(shù)列問(wèn)題的綜合性與靈活性說(shuō)明競(jìng)賽輔導(dǎo)-數(shù)列(一)等差數(shù)列與等比數(shù)列2等差數(shù)列、等比數(shù)列是兩個(gè)最基本的數(shù)列.等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的差an-an-1為常數(shù)d(d為公差)數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的
2025-02-22 00:53
【總結(jié)】知識(shí)改變命運(yùn),學(xué)習(xí)成就未來(lái)2011年高三數(shù)學(xué)一輪復(fù)習(xí)精品導(dǎo)學(xué)案:第五章數(shù)列【知識(shí)特點(diǎn)】(1)數(shù)列是高中數(shù)學(xué)的主要內(nèi)容之一是高考的??純?nèi)容;(2)數(shù)列具有函數(shù)特征,又能構(gòu)成獨(dú)特的遞推關(guān)系,故使得數(shù)列與函數(shù)、方程、不等式等知識(shí)有較密切的聯(lián)系,因此高考命題時(shí)常將數(shù)列與函數(shù)、不等式、向量等交匯,考查學(xué)生的邏輯思維能力、運(yùn)算推理能力,呈現(xiàn)出綜合性強(qiáng)、立意新的特點(diǎn);(3)數(shù)
2025-06-08 00:01
【總結(jié)】§等差數(shù)列一.課程目標(biāo);;,并能用等差數(shù)列的有關(guān)知識(shí)解決相應(yīng)的問(wèn)題;.二.知識(shí)梳理如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.數(shù)學(xué)語(yǔ)言表達(dá)式:an+1-an=d(n∈N*,d為常數(shù)),或an-an-1=d(n≥2,d為常數(shù)).2.
2025-03-25 06:56
【總結(jié)】第六單元等差數(shù)列與等比數(shù)列(1)已知等差數(shù)列中,的值是 ()A15B30 C31D64(2)在各項(xiàng)都為正數(shù)的等比數(shù)列{an}中,首項(xiàng)a1=3,前三項(xiàng)和為21,則a3+a4+a5=()A33
2025-06-07 23:53
【總結(jié)】《九章算術(shù)》中的等差、等比數(shù)列陜西省榆林市橫山區(qū)橫山中學(xué)劉克忠2016年9月26日,教育部考試中心下發(fā)《關(guān)于2017年普通高考考試大綱修訂內(nèi)容的通知》,內(nèi)涵方面,增加了基礎(chǔ)性、綜合性、應(yīng)用性、創(chuàng)新性的要求,特別增加了數(shù)學(xué)文化的要求.提起數(shù)學(xué)文化,其輝煌的成就,《九章算術(shù)》是代表作.《九章算術(shù)》系統(tǒng)總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí),收有246個(gè)與生產(chǎn)、生活實(shí)踐有聯(lián)系的
2025-04-07 02:20
【總結(jié)】狀元源、免費(fèi)提供中學(xué)高考復(fù)習(xí)各科試卷下載及高中學(xué)業(yè)水平測(cè)試各科資源下載2011年高三數(shù)學(xué)一輪復(fù)習(xí)精品導(dǎo)學(xué)案:第五章數(shù)列【知識(shí)特點(diǎn)】(1)數(shù)列是高中數(shù)學(xué)的主要內(nèi)容之一是高考的??純?nèi)容;(2)數(shù)列具有函數(shù)特征,又能構(gòu)成獨(dú)特的遞推關(guān)系,故使得數(shù)列與函數(shù)、方程、不等式等知識(shí)有較密切的聯(lián)系,因此高考命題時(shí)常將數(shù)列與函數(shù)、不等式、向量等交匯,考查學(xué)生的邏輯思維能力、運(yùn)算推理能
2025-06-07 23:16
【總結(jié)】《等差數(shù)列與等比數(shù)列》小結(jié)湖北省天門實(shí)驗(yàn)高級(jí)中學(xué)彭淑芬一、教學(xué)設(shè)計(jì)本節(jié)課內(nèi)容是在系統(tǒng)地學(xué)習(xí)完等差數(shù)列、等比數(shù)列后的一節(jié)單元小結(jié)課,小節(jié)分兩課時(shí),本節(jié)課為第一課時(shí),主要對(duì)等差數(shù)列和等比數(shù)列的定義和公式進(jìn)行小結(jié)和應(yīng)用.這一單元的知識(shí)點(diǎn)有:等差數(shù)列、等差數(shù)列的前n項(xiàng)和、等比數(shù)列、等比數(shù)列前n項(xiàng)和
2024-11-18 15:56
【總結(jié)】 第2講數(shù)列求和及綜合應(yīng)用 限時(shí)50分鐘 滿分76分 一、選擇題(本大題共6小題,每小題5分,共30分) 1.(2020·重慶七校聯(lián)考)若數(shù)列{an}滿足-=0,則稱{an}為“夢(mèng)想數(shù)列”...
2025-04-03 02:57
【總結(jié)】第4課時(shí)等差、等比數(shù)列的應(yīng)用?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點(diǎn)·疑點(diǎn)·考點(diǎn)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,存期為x
2025-04-30 03:31
【總結(jié)】浮梁一中:余盛洋QQ:85431339北師大版高中數(shù)學(xué)必修5第一章《數(shù)列》浮梁一中余盛洋制作浮梁一中:余盛洋QQ:85431339一、教學(xué)目標(biāo):1、知識(shí)與技能:⑴了解現(xiàn)實(shí)生活中存在著一類特殊的數(shù)列;⑵理解等比數(shù)列的概念,探索并掌握等比數(shù)列的通項(xiàng)公式;⑶能在具體的問(wèn)題情境中,發(fā)現(xiàn)數(shù)列的等比關(guān)系,并能用有關(guān)的知識(shí)解決相應(yīng)的實(shí)際問(wèn)題;⑷
2024-11-21 02:05
【總結(jié)】等差數(shù)列、等比數(shù)列課時(shí)考點(diǎn)4高三數(shù)學(xué)備課組考試內(nèi)容:數(shù)列.等差數(shù)列及其通項(xiàng)公式.等差數(shù)列前n項(xiàng)和公式.等比數(shù)列及其通項(xiàng)公式.等比數(shù)列前n項(xiàng)和公式.考試要求:(1)理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義.了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).(2)理解等差數(shù)列的概念,
2025-07-25 15:40