【總結】第一篇:等差數(shù)列、等比數(shù)列的證明及數(shù)列求和 等差數(shù)列、等比數(shù)列的證明 1.已知數(shù)列{an}滿足a1=1,an=3an-1+2n-3(n32),(Ⅰ)求證:數(shù)列{an+n}是等比數(shù)列; (Ⅱ)求數(shù)...
2025-10-03 01:48
【總結】構造等差數(shù)列或等比數(shù)列?由于等差數(shù)列與等比數(shù)列的通項公式顯然,對于一些遞推數(shù)列問題,若能構造等差數(shù)列或等比數(shù)列,無疑是一種行之有效的構造方法.?例1?設各項均為正數(shù)的數(shù)列的前n項和為Sn,對于任意正整數(shù)n,都有等式:成立,求的通項an.?解:,??∴????,
2025-06-24 16:44
【總結】2020屆高考數(shù)學復習強化雙基系列課件36《等差數(shù)列與等比數(shù)列的綜合問題》課前熱身:30,37,32,35,34,33,36,(),38的特點,在括號內適當?shù)囊粋€數(shù)是_____.x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四
2025-11-02 08:49
【總結】1.【2017浙江,6】已知等差數(shù)列{an}的公差為d,前n項和為Sn,則“d0”是“S4+S62S5”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】C【考點】等差數(shù)列、充分必要性【名師點睛】本題考查等差數(shù)列的前項和公式,通過公式的套入與簡單運算,可知,結合充分必要性的判斷,若,則是的充
2025-04-17 01:49
【總結】1知識概括數(shù)列問題的綜合性與靈活性說明競賽輔導-數(shù)列(一)等差數(shù)列與等比數(shù)列2等差數(shù)列、等比數(shù)列是兩個最基本的數(shù)列.等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項與前一項的差an-an-1為常數(shù)d(d為公差)數(shù)列{an}的后一項與前一項的
2025-02-22 00:53
【總結】知識改變命運,學習成就未來2011年高三數(shù)學一輪復習精品導學案:第五章數(shù)列【知識特點】(1)數(shù)列是高中數(shù)學的主要內容之一是高考的??純热荩唬?)數(shù)列具有函數(shù)特征,又能構成獨特的遞推關系,故使得數(shù)列與函數(shù)、方程、不等式等知識有較密切的聯(lián)系,因此高考命題時常將數(shù)列與函數(shù)、不等式、向量等交匯,考查學生的邏輯思維能力、運算推理能力,呈現(xiàn)出綜合性強、立意新的特點;(3)數(shù)
2025-06-08 00:01
【總結】第4課時等差、等比數(shù)列的應用?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點·疑點·考點按復利計算利息的一種儲蓄,本金為a元,每期利率為r,存期為x
2025-04-30 03:31
【總結】第六單元等差數(shù)列與等比數(shù)列(1)已知等差數(shù)列中,的值是 ()A15B30 C31D64(2)在各項都為正數(shù)的等比數(shù)列{an}中,首項a1=3,前三項和為21,則a3+a4+a5=()A33
2025-06-07 23:53
【總結】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第4課時等差、等比數(shù)列的應用要點·疑點·考點按復利計算利息的一種儲蓄,本金為a元,每期利率為r,
2025-01-08 13:49
【總結】§等差數(shù)列一.課程目標;;,并能用等差數(shù)列的有關知識解決相應的問題;.二.知識梳理如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.數(shù)學語言表達式:an+1-an=d(n∈N*,d為常數(shù)),或an-an-1=d(n≥2,d為常數(shù)).2.
2025-03-25 06:56
【總結】狀元源、免費提供中學高考復習各科試卷下載及高中學業(yè)水平測試各科資源下載2011年高三數(shù)學一輪復習精品導學案:第五章數(shù)列【知識特點】(1)數(shù)列是高中數(shù)學的主要內容之一是高考的??純热?;(2)數(shù)列具有函數(shù)特征,又能構成獨特的遞推關系,故使得數(shù)列與函數(shù)、方程、不等式等知識有較密切的聯(lián)系,因此高考命題時常將數(shù)列與函數(shù)、不等式、向量等交匯,考查學生的邏輯思維能力、運算推理能
2025-06-07 23:16
【總結】等差數(shù)列、等比數(shù)列課時考點4高三數(shù)學備課組考試內容:數(shù)列.等差數(shù)列及其通項公式.等差數(shù)列前n項和公式.等比數(shù)列及其通項公式.等比數(shù)列前n項和公式.考試要求:(1)理解數(shù)列的概念,了解數(shù)列通項公式的意義.了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.(2)理解等差數(shù)列的概念,
2025-07-25 15:40
【總結】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第4課時等差、等比數(shù)列的應用要點·疑點·考點按復利計算利息的一種儲蓄,本金為a元,每期利率為r,存期為
2025-11-03 16:42
【總結】等差數(shù)列性質總結:(d為常數(shù))();2.等差數(shù)列通項公式:,首項:,公差:d,末項:推廣:.從而;3.等差中項(1)如果,,成等差數(shù)列,那么叫做與的等差中項.即:或(2)等差中項:數(shù)列是等差數(shù)列4.等差數(shù)列的前n項和公式:(其中A、B是常數(shù),所以當d≠0時,Sn是關于n的二次式且常數(shù)項為0)特別地,當項數(shù)
2025-06-30 04:17
【總結】等差、等比數(shù)列的求和公式一、考綱要求:掌握等差的求和公式、等比數(shù)列的求和公式.二、教學目標:1、掌握等差數(shù)列前n項和公式及其推導過程2、掌握等比數(shù)列前n項和公式及其推導過程3、能熟練利用公式解決相關問題三、重點難點掌握公式的推導方法和公式的應用教學過程:知識梳理:1.(1)等差數(shù)列的前項和(倒序相加法):公式1:公式2:;(2)若數(shù)
2025-06-07 21:56