【總結(jié)】等差數(shù)列定義:按一定次序排列的一列數(shù)叫數(shù)列(3)數(shù)列中的數(shù)是有順序的,而數(shù)集合的數(shù)是無(wú)序的。(2)數(shù)列中的數(shù)是可重復(fù)的,而數(shù)集中的數(shù)是互異的。(1)數(shù)列與數(shù)集都是具有某種共同屬性的數(shù)的全體。知識(shí)回顧數(shù)列與數(shù)集有何區(qū)別和聯(lián)系數(shù)列分類:項(xiàng)數(shù)有限的數(shù)列叫有窮數(shù)列;
2024-11-18 08:48
【總結(jié)】等差數(shù)列的前n項(xiàng)和一、教材分析1.教學(xué)內(nèi)容:本節(jié)課是高中人教A版必修5第二章第三節(jié)第一課時(shí)的內(nèi)容。主要研究等差數(shù)列的前n項(xiàng)和公式的推導(dǎo)及其簡(jiǎn)單應(yīng)用。2.地位與作用本節(jié)課是前面所學(xué)知識(shí)的延續(xù)和深化,又是后面學(xué)習(xí)“等比數(shù)列及其前n項(xiàng)和”的基礎(chǔ)和前奏。學(xué)好了本節(jié)課的內(nèi)容,既能加深對(duì)數(shù)列有關(guān)概念的理解,又能為后面學(xué)好等比數(shù)列及數(shù)列求和
2024-12-08 20:22
【總結(jié)】?2.2等差數(shù)列的前n項(xiàng)和?一、等差數(shù)列{an}的前n項(xiàng)和公式?一般地,我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項(xiàng)和,用Sn表示,即Sn=①________.?對(duì)于等差數(shù)列{an}來(lái)說(shuō),設(shè)其首項(xiàng)為a1,末項(xiàng)為an,項(xiàng)數(shù)為n,由倒序相加法可知其前n項(xiàng)和Sn=②:等差數(shù)列前n項(xiàng)和
2024-11-17 17:38
【總結(jié)】第一篇:高中數(shù)學(xué)(二)新人教A版必修5 等差數(shù)列 (第一課時(shí))[講授新課]1.等差數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等...
2024-10-14 05:43
【總結(jié)】等比數(shù)列(第1課時(shí))學(xué)習(xí)目標(biāo),理解等比數(shù)列的概念.,明確一個(gè)數(shù)列是等比數(shù)列的限定條件;能夠運(yùn)用類比的思想方法得到等比數(shù)列的定義,會(huì)推導(dǎo)等比數(shù)列的通項(xiàng)公式.合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境:定義:通項(xiàng)公式:an=a1+(n-1)d,(n∈N*).前n項(xiàng)和公式:Sn==na1+d,(n∈
2024-12-08 07:03
【總結(jié)】【成才之路】2021年春高中數(shù)學(xué)第1章數(shù)列2等差數(shù)列第3課時(shí)等差數(shù)列的前n項(xiàng)和同步練習(xí)北師大版必修5一、選擇題1.已知等差數(shù)列{an}滿足a2+a4=4,a3+a5=10,則它的前10項(xiàng)和S10=()A.138B.135C.95D.23[答案]C[解析]
2024-12-05 06:36
【總結(jié)】等差數(shù)列高中數(shù)學(xué)歡迎指導(dǎo)在過(guò)去的三百多年里,人們分別在下列時(shí)間里觀測(cè)到了哈雷慧星:(1)1682,1758,1834,1910,1986,()你能預(yù)測(cè)出下一次的大致時(shí)間嗎?2062相差76通常情況下,從地面到10公里的高空,氣溫隨高度的變化而變化符合一定的規(guī)律,請(qǐng)你根據(jù)
2024-11-17 16:26
【總結(jié)】第2課時(shí)等差數(shù)列1.等差數(shù)列的定義:-=d(d為常數(shù)).2.等差數(shù)列的通項(xiàng)公式:⑴an=a1+×d⑵an=am+×d3.等差數(shù)列的前n項(xiàng)和公式:Sn==.4.等差中項(xiàng):如
2024-11-30 14:35
【總結(jié)】§等差數(shù)列2.等差數(shù)列自主學(xué)習(xí)知識(shí)梳理1.等差數(shù)列的定義一般地,如果一個(gè)數(shù)列從第____項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于____常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的____,通常用字母______表示.2.等差中項(xiàng)如果A=a+b2,那么A叫做a與
2024-12-05 06:38
【總結(jié)】等差數(shù)列的前n項(xiàng)和2.等差數(shù)列的前n項(xiàng)和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項(xiàng)和為Sn,則該數(shù)列的通項(xiàng)公式為S1,n=1Sn-Sn-1,n≥2an=一、復(fù)習(xí)3.若數(shù)列{an}為等差數(shù)列:1(1)2nnnad???2,
2024-11-18 12:17
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學(xué)課時(shí)作業(yè)12等差數(shù)列的前n項(xiàng)和(第1課時(shí))新人教版必修51.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=6,a3=4,則公差d等于()A.1C.2D.3答案C解析由?????a1+2=6,a1+2d=4,解得
2024-11-28 01:20
【總結(jié)】應(yīng)用舉例(第1課時(shí))學(xué)習(xí)目標(biāo)、余弦定理等知識(shí)和方法解決一些有關(guān)測(cè)量距離的實(shí)際問題,了解常用的測(cè)量相關(guān)術(shù)語(yǔ).;同時(shí)提升運(yùn)用圖形、數(shù)學(xué)符號(hào)表達(dá)題意和應(yīng)用轉(zhuǎn)化思想解決數(shù)學(xué)問題的能力.合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境問題1:在日常生活和工農(nóng)業(yè)生產(chǎn)中,為了達(dá)到某種目的,常常想測(cè)得一個(gè)點(diǎn)與另一個(gè)不可到達(dá)的點(diǎn)間的距離或在遠(yuǎn)處的
2024-12-09 03:48
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十四分。,2.3等差數(shù)列的前n項(xiàng)和第二課時(shí)等差數(shù)列前n項(xiàng)和的應(yīng)用,第二頁(yè),編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十四分。,第...
2024-10-22 18:53
【總結(jié)】等比數(shù)列(第2課時(shí))學(xué)習(xí)目標(biāo)靈活應(yīng)用等比數(shù)列的定義及通項(xiàng)公式;深刻理解等比中項(xiàng)的概念;熟悉等比數(shù)列的有關(guān)性質(zhì),并系統(tǒng)了解判斷數(shù)列是否是等比數(shù)列的方法.通過(guò)自主探究、合作交流獲得對(duì)等比數(shù)列性質(zhì)的認(rèn)識(shí).充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型,體會(huì)數(shù)學(xué)是來(lái)源于現(xiàn)實(shí)生活,并應(yīng)用于現(xiàn)實(shí)生活的,數(shù)學(xué)是豐富多彩的而不是枯燥無(wú)味的,提高學(xué)習(xí)的興趣.合
2024-12-09 03:42
【總結(jié)】等差數(shù)列【知識(shí)梳理】1.等差數(shù)列的定義如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.2.等差中項(xiàng)如果三個(gè)數(shù)a,A,b成等差數(shù)列,那么A叫做a與b的等差中項(xiàng).這三個(gè)數(shù)滿足的關(guān)系式是A=.3.等差數(shù)列的通項(xiàng)公式已知等差數(shù)列{an}的首項(xiàng)為a1,公差為d遞推公式通項(xiàng)公式an
2025-04-04 05:10