【總結(jié)】課題:兩角和與差的正弦班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】(差)角公式推導(dǎo)出正弦和(差)角公式;(差)角公式進行簡單的三角函數(shù)式的化簡,求值。【課前預(yù)習(xí)】1、余弦的和差角公式:??)cos(??;??)co
2024-11-19 21:43
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角差的余弦公式學(xué)業(yè)達標(biāo)測試新人教A版必修41.下列式子中,正確的個數(shù)為()①cos(α-β)=cosα-cosβ;②cos??????π2+α=sinα;③cos(α-β)=cosαcosβ-sinαsinβ.A.0B.1
2024-12-08 13:12
【總結(jié)】課題:兩角和與差的正切(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】,化簡及證明三角恒等式;?!菊n前預(yù)習(xí)】1、若??tantan?,是方程0382???xx的兩根,且??,為銳角,則??)cos(??2、若????
2024-12-05 10:15
【總結(jié)】§兩角和與差的余弦(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、公式)(???C:cos(-)???令?=-(??)得)(???C:cos()????特征:①
2024-11-27 23:39
【總結(jié)】兩角差的余弦公式教學(xué)目的:經(jīng)歷用向量數(shù)量積推導(dǎo)出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結(jié)構(gòu)特征,并會應(yīng)用。教學(xué)重點:兩角差的余弦公式結(jié)構(gòu)及其應(yīng)用教學(xué)難點:兩角差的余弦公式的推導(dǎo)。教學(xué)過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-08 22:40
【總結(jié)】兩角和與差的正弦公式【學(xué)習(xí)目標(biāo)】1、掌握兩角和與差的正弦公式及其推導(dǎo)方法。2、通過公式的推導(dǎo),了解它們的內(nèi)在聯(lián)系,培養(yǎng)邏輯推理能力。并運用進行簡單的三角函數(shù)式的化簡、求值和恒等變形。3、掌握誘導(dǎo)公式sin=cosα,sin=cosα,si
2024-11-20 01:05
【總結(jié)】3.兩角和與差的正弦上一節(jié)我們研究了兩角和與差的余弦,一個自然的想法是兩角和與差的正弦等于什么?即sin(α±β)=?本節(jié)我們就探索這樣的問題,并加以應(yīng)用.1.兩角差的正弦公式____________________________________,這個公式對任意α、β都成立.答案:sin(α
2024-12-09 03:40
【總結(jié)】19:29:2419:29:24一、新課引入問題1:cos15°=?問題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2024-11-17 19:44
【總結(jié)】雙基達標(biāo)?限時20分鐘?1.計算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設(shè)α∈??????0,π2,若sinα=35,則2cos
2024-11-28 01:12
【總結(jié)】二倍角的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1、以兩角和正弦、余弦和正切公式為基礎(chǔ),推導(dǎo)二倍角正弦、余弦和正切公式2、二倍公式角的理解及其靈活運用回憶兩角和的正弦、余弦、正切公式??????sinsincoscos)cos(?????????sincoscossin)sin(
2024-11-18 08:49
【總結(jié)】課題:兩角和與差的正切(1)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】(差)的正切公式的推導(dǎo)過程;(差)的正切公式進行簡單三角函數(shù)式的化簡,求值和證明。【課前預(yù)習(xí)】1、求?15tan的值。2、兩角和的正切公式的推導(dǎo):
【總結(jié)】一、選擇題1.cos45°cos15°+sin15°sin45°的值為()A.-32B.32C.22D.-22【解析】cos45°cos15°+sin15°sin45°=cos(45°-15°
【總結(jié)】學(xué)習(xí)目標(biāo)掌握用向量方法建立兩角差的余弦公式.通過簡單運用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ).學(xué)習(xí)過程一、課前準(zhǔn)備自學(xué)過程:1、cos()????,2、cos()????
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)兩角和與差的正切函數(shù)課后訓(xùn)練北師大版必修4"1.若tanα=3,則13tan4?????????的值為().A.-2B.2C.12D.12?2.已知tan(α+β)=25,1
2024-12-03 03:13
【總結(jié)】某城市的電視發(fā)射塔建在市郊的一座小山上.如圖所示,在地平面上有一點A,測得A、C兩點間距離約為60米,從A觀測電視發(fā)射塔的視角(∠CAD)為∠DAB=求AD長度.????思考:兩角差的余弦公式探究:如何用任意角α,β的正弦、余弦值表示?cos()???
2024-08-03 16:07