【總結】課題兩角和與差的正弦、余弦、正切公式(二)教學目標知識與技能理解以兩角差的余弦公式為基礎過程與方法推導兩角和、差正弦和正切公式的方法情感態(tài)度價值觀體會三角恒等變換特點的過程,理解推導過程,掌握其應用重點兩角和、差正弦和正切公式的推導過程及運用難點兩角和與差正弦、余弦和正切公式的
2025-11-26 06:46
【總結】課題兩角和與差的正弦、余弦、正切公式(一)教學目標知識與技能理解以兩角差的余弦公式為基礎,推導兩角和、差正弦和正切公式的方法過程與方法體會三角恒等變換特點的過程,理解推導過程,掌握其應用情感態(tài)度價值觀聯想觀察分析靈活運用公式重點兩角和、差正弦和正切公式的推導過程及運用難點兩角和與差正弦
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據兩角差的余弦公式推導出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進行化簡求值.(重點)2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號規(guī)律.(易混點)3.能正用、逆用、變形用公式進行化簡求值.
2025-11-25 18:51
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(二)1.能利用兩角和與差的正、余弦公式推導出兩角和與差的正切公式并能應用.(重點)2.能夠熟練地正用、逆用和變形應用兩角和與差的正切公式.(重點、難點)兩角和與差的正切公式做一做(1)已知tanα=1
【總結】3.兩角和與差的正切你能根據正切函數與正弦、余弦函數的關系,從C(α±β)、S(α±β)出發(fā),推導出用任意角α,β的正切表示tan(α+β)、tan(α-β)的公式嗎?1.公式T(α-β)是_____________________________________
2025-11-26 10:15
【總結】兩角和與差的正弦、余弦、正切公式1.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos62°sin28°=sin(62°+
【總結】兩角和與差的正弦、余弦、正切公式知識點及角度難易度及題號基礎中檔稍難兩角和與差正切公式的運用1、3、67、9給值求值(角)問題2、4、510、11綜合問題8121.與1-tan21°1+tan21°相等的是()A.tan66
【總結】第3章三角恒等變換3.1兩角和與差的三角函數3.兩角和與差的余弦思考:cos(α-β)=?有人認為cos(α-β)=cosα-cosβ,對不對?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
【總結】兩角和與差的正弦公式【學習目標】1、掌握兩角和與差的正弦公式及其推導方法。2、通過公式的推導,了解它們的內在聯系,培養(yǎng)邏輯推理能力。并運用進行簡單的三角函數式的化簡、求值和恒等變形。3、掌握誘導公式sin=cosα,sin=cosα,sin
2025-11-19 16:29
【總結】名稱簡記符號公式使用條件兩角和的余弦兩角差的余弦+C??()C???()cos()coscossinsin?????????cos()coscossinsin?????????,R???,R???名
【總結】【優(yōu)化指導】2021年高中數學兩角和與差的正弦、余弦、正切公式(一)課時跟蹤檢測新人教A版必修4知識點及角度難易度及題號基礎中檔稍難三角函數式的化簡求值1、510條件求值問題46、7、8綜合問題2、39、11121.若sin(α+β)cosβ-cos(α
2025-11-30 03:40
【總結】【優(yōu)化指導】2021年高中數學兩角和與差的正弦、余弦、正切公式(二)學業(yè)達標測試新人教A版必修41.若tan??????π4+α=3,則tanα的值為()A.-2B.-12D.2解析:tan??????π4+α=3,即1+tanα1-tanα=3,解得tanα
【總結】【優(yōu)化指導】2021年高中數學兩角和與差的正弦、余弦、正切公式(一)學業(yè)達標測試新人教A版必修41.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos
【總結】兩角差的余弦公式教學目的:經歷用向量數量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結構特征,并會應用。教學重點:兩角差的余弦公式結構及其應用教學難點:兩角差的余弦公式的推導。教學過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2025-11-29 22:40