【總結(jié)】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認(rèn)為cos(α-β)=cosα-cosβ,對(duì)不對(duì)?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
2024-12-05 10:15
【總結(jié)】?jī)山呛团c差的余弦一、知識(shí)掃描cos(α-β)=二、課堂探究1.探究?coscos)cos(???????2.探究cos(???)的公式思考?.1角函數(shù)線(xiàn)來(lái)探求公式怎樣聯(lián)系單位圓上的三(1)怎樣構(gòu)造角?和角????(注意:要與它們
2024-12-02 10:14
【總結(jié)】高中數(shù)學(xué)必修四《兩角和與差的正切》教學(xué)設(shè)計(jì)一、概述本節(jié)課為1課時(shí),40分鐘。本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)?數(shù)學(xué)(必修四)》(人教B版)第三章《三角恒等變換》中的第三節(jié)《兩角和與差的正切》,是《兩角和與差的正余弦》的延伸,也是三角恒等變換公式的重要組成部分.教材主要通過(guò)兩角和的正弦公式及兩角和的余弦公式
2024-11-18 16:43
【總結(jié)】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)兩角和與差的正切函數(shù)課后訓(xùn)練北師大版必修4"1.若tanα=3,則13tan4?????????的值為().A.-2B.2C.12D.12?2.已知tan(α+β)=25,1
2024-12-03 03:13
【總結(jié)】?jī)山遣畹挠嘞夜浇虒W(xué)目的:經(jīng)歷用向量數(shù)量積推導(dǎo)出兩角差的余弦公式的過(guò)程,進(jìn)一步體會(huì)向量方法的作用;掌握兩角差的余弦公式的結(jié)構(gòu)特征,并會(huì)應(yīng)用。教學(xué)重點(diǎn):兩角差的余弦公式結(jié)構(gòu)及其應(yīng)用教學(xué)難點(diǎn):兩角差的余弦公式的推導(dǎo)。教學(xué)過(guò)程一、新課引入課本P136的問(wèn)題二、新課[1、問(wèn)題的提出co
2024-12-08 22:40
【總結(jié)】《兩角和與差的正切》教學(xué)設(shè)計(jì)課前預(yù)習(xí)問(wèn)題串:1、兩角和與差的正切如何推導(dǎo)?2、兩角和與差的正切有何限制條件?3、公式特點(diǎn)是什么?如何記憶?4、公式有什么用處?有什么變形?一、教學(xué)目標(biāo)1、知識(shí)目標(biāo):掌握公式的推導(dǎo)過(guò)程,理解公式成立的條件;會(huì)利用公式求值。2、能力目標(biāo):培
2024-11-28 00:26
【總結(jié)】§兩角和與差的正弦、正切和余切【學(xué)習(xí)目標(biāo)、細(xì)解考綱】、余弦、正切公式,會(huì)初步運(yùn)用公式求一些角的三角函數(shù)值;角和與差的三角函數(shù)公式的探究過(guò)程,提高發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力;【知識(shí)梳理、雙基再現(xiàn)】1、在一般情況下sin(α+β)≠sinα+sinβ,cos(α+β)≠cosα+cosβ
2024-11-30 13:51
【總結(jié)】?jī)山呛团c差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦公式.2.會(huì)用兩角和與差的正、余弦公式進(jìn)行簡(jiǎn)單的三角函數(shù)的求值、化簡(jiǎn)、計(jì)算等.3.熟悉兩角和與差的正、余弦公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.學(xué)習(xí)重點(diǎn)
2024-12-05 06:46
【總結(jié)】?jī)山呛团c差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式.2.能利用兩角和與差的正切公式進(jìn)行化簡(jiǎn)、求值、證明.3.熟悉兩角和與差的正切公式的常見(jiàn)變形,并能靈活應(yīng)用.學(xué)習(xí)重點(diǎn):兩角和、差正切公式的推導(dǎo)過(guò)程及運(yùn)用學(xué)習(xí)難點(diǎn):兩角和與差正切公式的靈活運(yùn)用一.
【總結(jié)】19:29:2419:29:24一、新課引入問(wèn)題1:cos15°=?問(wèn)題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2024-11-17 19:44
2024-12-09 03:40
【總結(jié)】3.兩角和與差的正弦上一節(jié)我們研究了兩角和與差的余弦,一個(gè)自然的想法是兩角和與差的正弦等于什么?即sin(α±β)=?本節(jié)我們就探索這樣的問(wèn)題,并加以應(yīng)用.1.兩角差的正弦公式____________________________________,這個(gè)公式對(duì)任意α、β都成立.答案:sin(α
【總結(jié)】一、選擇題1.tan75°-tan15°1+tan75°tan15°=()A.-2B.2C.-3D.3【解析】原式=tan(75°-15°)=tan60°=3.【答案】D2.已知tanα+tanβ=2,tan
2024-11-28 01:12
【總結(jié)】?jī)山呛团c差的正弦、余弦、正切公式一、和角與差角公式應(yīng)用的規(guī)律兩角和與差的正、余弦公式主要用于求值、化簡(jiǎn)、證明等三角變換,常見(jiàn)的規(guī)律如下:①配角的方法:通過(guò)對(duì)角的“合成”與“分解”,尋找欲求角與已知角的內(nèi)在聯(lián)系,靈活應(yīng)用公式,如α=(α+β)-β,α=21(α+β)+21(α-β)等.②公式的逆用與變形公式的活用
【總結(jié)】課題:——任意角姓名:一:學(xué)習(xí)目標(biāo);,判斷象限角,掌握終邊相同角的集合的書(shū)寫(xiě)。二:課前預(yù)習(xí)繞著從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。,按順時(shí)針?lè)较蛐D(zhuǎn)形成的角叫做
2024-12-05 10:17