【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列敘述錯(cuò)誤的是().A.a(chǎn)rctana表示一個(gè)??????-π2,π2內(nèi)的角B.若x=arcsina,則sinx=aC.若tanx2=a,則x=arctan2aD.a(chǎn)rcsina、arccosa中的a∈[-1,1]答案C2.若α
2024-11-27 23:47
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.如果e1、e2是平面α內(nèi)所有向量的一組基底,那么下列命題正確的是().A.若實(shí)數(shù)λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對(duì)空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
2024-11-27 23:46
【總結(jié)】?jī)山呛团c差的正切公式一.學(xué)習(xí)要點(diǎn):兩角和與差的正切公式及其簡(jiǎn)單應(yīng)用。二.學(xué)習(xí)過程:1.公式及其推導(dǎo):2.公式的結(jié)構(gòu)特征:2.公式的運(yùn)用:例1求tan15?和tan75?的值例2求下列各式的值:1?1tan751tan75??2?
2024-11-27 23:36
【總結(jié)】第三章一、選擇題1.若tan(π4-α)=3,則cotα等于()A.-2B.-12C.12D.2[答案]A[解析]∵tan(π4-α)=1-tanα1+tanα=3,∴tanα=-12,∴cotα=-2.2.設(shè)tanα、tanβ是方程x2-3x+2
2024-11-28 02:11
【總結(jié)】?jī)山呛团c差的正弦公式一.學(xué)習(xí)要點(diǎn):兩角和與差的正弦公式及其簡(jiǎn)單應(yīng)用。二.學(xué)習(xí)過程:1.兩角和與差的正弦公式及推導(dǎo):公式:
【總結(jié)】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
2024-12-05 10:15
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.如圖在單位圓中角α的正弦線、正切線完全正確的是().A.正弦線PM,正切線A′T′B.正弦線MP,正切線A′T′C.正弦線MP,正切線ATD.正弦線PM,正切線AT解析根據(jù)單位圓中的三角函數(shù)線可知C正確.答案C2.如果MP、OM分
2024-11-27 23:51
【總結(jié)】數(shù)列的遞推公式(選學(xué))1.?dāng)?shù)列{an}滿足an+1=an+n,且a1=1,則a5的值為().A.9B.10C.11D.12解析a5=a4+4=a3+3+4=a2+2+3+4=a1+1+2+3+4=11.答案C2.已知數(shù)列{an}的首項(xiàng)為a1=1,且滿
2024-11-27 23:54
【總結(jié)】?jī)山呛团c差的余弦公式教學(xué)設(shè)計(jì)【教學(xué)三維目標(biāo)】:理解兩角和與差的余弦公式的推導(dǎo)過程,熟記兩角和與差的余弦公式,運(yùn)用兩角和與差的余弦公式,解決相關(guān)數(shù)學(xué)問題;培養(yǎng)學(xué)生嚴(yán)密而準(zhǔn)確的數(shù)學(xué)表達(dá)能力;培養(yǎng)學(xué)生逆向思維和發(fā)散思維能力;2過程與方法目標(biāo):通過對(duì)公式的推導(dǎo)提高學(xué)生研究問題、分析問題、解決問題能力
2024-11-19 11:24
【總結(jié)】教學(xué)設(shè)計(jì):一:學(xué)習(xí)目標(biāo):二:復(fù)習(xí)引入:(1)向量的數(shù)量積(定義)__________ba??),,a11yx(?),b22yx(?則(坐標(biāo)表達(dá)式)__________ba??(2)觀察圖(一)單位圓上的點(diǎn)的坐標(biāo)表示p1()p2(
2024-11-28 00:26
【總結(jié)】不等式的性質(zhì)雙基達(dá)標(biāo)限時(shí)20分鐘1.已知a,b,c,d∈R且ab0,-ca-db,則().A.bcadbd0,∴在-ca-db兩側(cè)乘ab不變號(hào),即-bc-ad,即bcad.答
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)y=-sinx,x∈??????-π2,3π2的簡(jiǎn)圖是().解析由y=sinx與y=-sinx的圖象關(guān)于x軸對(duì)稱可知選D.答案D2.在[0,2π]內(nèi),不等式sinx-32的解集是().A.(0,
【總結(jié)】?jī)山呛团c差的余弦一、教學(xué)目標(biāo):經(jīng)歷兩角和與差的余弦公式的推導(dǎo)過程,了解兩角和與差的余弦公式,并初步運(yùn)用兩角和與差的余弦公式,解決較簡(jiǎn)單的相關(guān)數(shù)學(xué)問題。2能力目標(biāo):培養(yǎng)學(xué)生嚴(yán)密而準(zhǔn)確的數(shù)學(xué)表達(dá)能力;培養(yǎng)學(xué)生的觀察能力,邏輯推理能力和合作學(xué)習(xí)能力。:通過觀察、對(duì)比體會(huì)數(shù)學(xué)的對(duì)稱美和諧
【總結(jié)】§兩角和與差的正切(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1.??tan????,??tan????。注意:1?必須在定義域范圍內(nèi)使用上述公式,tan?,tan?,tan(?
2024-11-18 16:43
【總結(jié)】§兩角和與差的正弦(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1、??sin????,??sin????。2、公式的結(jié)構(gòu)特征sin()????sin?cos??co