【總結】雙基達標?限時20分鐘?1.計算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設α∈??????0,π2,若sinα=35,則2cos
2024-11-28 01:12
【總結】一、選擇題1.化簡:sin21°cos81°-cos21°sin81°=()B.-12C.32D.-32【解析】sin21°cos81°-cos21°sin81°=sin(21°-81°)=-s
【總結】一、選擇題1.cos45°cos15°+sin15°sin45°的值為()A.-32B.32C.22D.-22【解析】cos45°cos15°+sin15°sin45°=cos(45°-15°
2024-11-27 23:39
【總結】兩角和與差的余弦公式教學設計【教學三維目標】:理解兩角和與差的余弦公式的推導過程,熟記兩角和與差的余弦公式,運用兩角和與差的余弦公式,解決相關數(shù)學問題;培養(yǎng)學生嚴密而準確的數(shù)學表達能力;培養(yǎng)學生逆向思維和發(fā)散思維能力;2過程與方法目標:通過對公式的推導提高學生研究問題、分析問題、解決問題能力
2024-11-27 23:36
【總結】教學設計:一:學習目標:二:復習引入:(1)向量的數(shù)量積(定義)__________ba??),,a11yx(?),b22yx(?則(坐標表達式)__________ba??(2)觀察圖(一)單位圓上的點的坐標表示p1()p2(
2024-11-18 16:43
【總結】兩角和與差的余弦一、教學目標:經(jīng)歷兩角和與差的余弦公式的推導過程,了解兩角和與差的余弦公式,并初步運用兩角和與差的余弦公式,解決較簡單的相關數(shù)學問題。2能力目標:培養(yǎng)學生嚴密而準確的數(shù)學表達能力;培養(yǎng)學生的觀察能力,邏輯推理能力和合作學習能力。:通過觀察、對比體會數(shù)學的對稱美和諧
【總結】《兩角和與差的余弦》說課稿一、教材分析:㈠、地位和作用:兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,是正弦線、余弦線和誘導公式等知識的延伸,是后繼內(nèi)容二倍角公式、和差化積、積化和差公式的知識基礎,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有重要的支撐作用。本課時主要講授平面內(nèi)兩點間距離公式、兩角和與差的余弦
2024-12-08 01:49
【總結】3.2.1倍角公式一。學習要點:二倍角公式及其簡單應用。二。學習過程:復習:和角公式.新課學習:sin2??cos2??tan2??升冪公式:降冪公式:例1、已知5sin2
【總結】一、自學目標:1、理解半角公式的推導過程2、會運用半角公式進行相關的運算。二、自學過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導方法是2?S與2?C兩
2024-11-27 23:35
【總結】兩角差的余弦公式教學目的:經(jīng)歷用向量數(shù)量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結構特征,并會應用。教學重點:兩角差的余弦公式結構及其應用教學難點:兩角差的余弦公式的推導。教學過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-08 22:40
【總結】余弦函數(shù)、正切函數(shù)的圖象與性質一.學習要點:余弦函數(shù)、正切函數(shù)的圖象與性質二.學習過程:1.余弦函數(shù)的圖象2.余弦函數(shù)的性質(1)定義域:.(2)值域:當時,max1y?.當
2024-11-18 16:45
【總結】高一數(shù)學正切函數(shù)的圖像與性質林銀玲目標1、借助正切函數(shù)的圖像,說出正切函數(shù)的性質;2、能利用正切函數(shù)的性質解決最值、奇偶性、單調性、周期性等有關問題;自學指
2024-11-18 16:46
【總結】3.3三角函數(shù)的積化和差與和差化積一。學習要點:積化和差與和差化積公式及其簡單應用。二。學習過程:1.積化和差公式2.和差化積公式例1:1。把cos3cos???化成積的形式.2。把1sincos????化成積的形式例2:已知
【總結】§(課前預習案)班級:___姓名:________編寫:一、新知導學sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
【總結】兩角和與差的正弦、余弦、正切公式學習目標:1.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦公式.2.會用兩角和與差的正、余弦公式進行簡單的三角函數(shù)的求值、化簡、計算等.3.熟悉兩角和與差的正、余弦公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.學習重點
2024-12-05 06:46