【總結】§兩角和與差的正弦(課前預習案)班級:___姓名:________編寫:一、新知導學1、??sin????,??sin????。2、公式的結構特征sin()????sin?cos??co
2024-11-27 23:36
【總結】誘導公式(一)崔文一、學習目標:1.了解三角函數(shù)的誘導公式的意義和作用.2.理解誘導公式的推導過程.3.能運用有關誘導公式解決一些三角函數(shù)的求值、化簡和證明問題.二、重點與難點:重點:誘導公式的記憶、理解、運用。難點:誘導公式的推導、記憶及符號的判斷;三、自學檢測誘導公式一~三(1)公式一:s
2024-11-27 23:50
【總結】正弦函數(shù)的圖象與性質(zhì)(四)一.學習要點:正弦函數(shù)的性質(zhì)之奇偶性、單調(diào)性二.學習過程:復習1.正弦函數(shù)的圖象;2.正弦函數(shù)的周期性;3.正弦函數(shù)的定義域、值域.新課學習:1.奇偶性由??sinsinxx???知:正弦函數(shù)sinyx?是,正弦曲線關于原點對稱.正弦
【總結】誘導公式(二)崔文一、學習目標1.掌握誘導公式四、五的推導,并能應用解決簡單的求值、化簡與證明問題.2.對誘導公式一至五,能作綜合歸納,體會出五組公式的共性與個性,培養(yǎng)由特殊到一般的數(shù)學推理意識和能力.3.繼續(xù)體會知識的“發(fā)生”、“發(fā)現(xiàn)”過程,培養(yǎng)研究問題、發(fā)現(xiàn)問題、解決問題的能力.二、學習指導五組誘導公式可以概括為一
2024-11-18 16:46
【總結】§數(shù)乘向量(課前預習案)班級:___姓名:________編寫:一、新知導學1、實數(shù)λ與向量a的乘積是一個向量,記作;|a?|=。2、a?的方向當λ0時,與a;當λ<
2024-11-18 16:44
【總結】撰稿教師:李麗麗自學目標,并理解其幾何意義。2.理解和應用向量數(shù)乘的運算律。學習過程一、※課前準備(預習教材86頁~87頁,找出疑惑之處)二、※新課導學1.數(shù)乘定義:______________________是一個向量,記作a?,它的長度與方向規(guī)定如下:(1)||a?=____
【總結】§(課前預習案)班級:___姓名:________編寫:一、新知導學sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
2024-11-27 23:35
【總結】§角的概念的推廣(課前預習案)班級:__姓名:__編寫:一、新知導學:在平面內(nèi),角可以看做是一條射線繞著它的端點旋轉而成的圖形.旋轉起始時的射線叫做角的,終止時的射線叫做角的,射線的端點叫做角的.按逆時針方向旋轉所得到的角為,而按順時針方向旋轉所得到的角為
【總結】正弦函數(shù)的圖象與性質(zhì)(一)一.學習要點:正弦函數(shù)的圖象和性質(zhì)二.學習過程:復習:三角函數(shù)線的概念及作法:設任意角α的終邊與單位圓相交于點P(x,y),過P作x軸的垂線,垂足為M,則有向線段MP叫做角α的正弦線,有向線段OM叫做角α的余弦線.新課學習:1.用單位圓中的正弦線作正弦函數(shù)的圖
【總結】正弦函數(shù)的圖象與性質(zhì)(五)一.學習要點:正弦型函數(shù)的圖象、圖象變換二.學習過程:正弦型函數(shù)形如??sinyAx????(其中,,A??都是常數(shù))的函數(shù),叫做正弦型函數(shù),其定義域是R.例1作函數(shù)2sinyx?及1sin2yx?的簡圖.規(guī)律探索:1.函數(shù)
2024-11-18 16:45
【總結】正弦函數(shù)的圖象與性質(zhì)(三)一.學習要點:正弦函數(shù)的性質(zhì)之周期性二.學習過程:復習提問1.正弦函數(shù)的圖象及其特征;2。誘導公式一新課學習:一、周期函數(shù):一般地,對于函數(shù))(xf,如果存在一個非零常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有)()(xfTxf??,那么函數(shù))(xf就叫做周期函數(shù)
【總結】正弦函數(shù)的圖象與性質(zhì)(二)一.學習要點:正弦函數(shù)的性質(zhì)之定義域、值域二.學習過程:復習提問1.正函數(shù)的圖象及其畫法;講授新課1.研究性質(zhì):觀察圖象可知(1)定義域:sinyx?的定義域為.(2)值域:1?sinyx?的值域為結論:
【總結】誘導公式一.學習要點:誘導公式及其簡單應用二.學習過程:一、復習:誘導公式一:二、講解新課:公式二:公式三:公式四:公
【總結】兩角和與差的正切公式一.學習要點:兩角和與差的正切公式及其簡單應用。二.學習過程:1.公式及其推導:2.公式的結構特征:2.公式的運用:例1求tan15?和tan75?的值例2求下列各式的值:1?1tan751tan75??2?
【總結】2.1.1向量的概念一.學習要點:向量的有關概念二.學習過程:一、復習:在現(xiàn)實生活中,我們會遇到很多量,其中一些量在取定單位后用一個實數(shù)就可以表示出來,如長度、質(zhì)量等.還有一些量,如我們在物理中所學習的位移,是一個既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學習::
2024-11-27 23:47