【總結】課題:兩角和與差的正弦、余弦班級:姓名:學號:第學習小組【學習目標】;【課前預習】1、兩角和的余弦公式:.__________________)cos(????兩角差的余弦公式:.___________
2025-11-26 00:28
【總結】3.1兩角和與差的三角公式習題課例1將下列sincosaxbx?化成sin()Ax??的形式(1)3sin3cosxx?;(2)3sincosxx?;(3)sin3cosxx??;(4)sin3cosxx??;(5)sincosxx?;(6)sincosxx?
2025-11-18 23:35
【總結】第三章一、選擇題1.若tan(π4-α)=3,則cotα等于()A.-2B.-12C.12D.2[答案]A[解析]∵tan(π4-α)=1-tanα1+tanα=3,∴tanα=-12,∴cotα=-2.2.設tanα、tanβ是方程x2-3x+2
2025-11-19 02:11
【總結】教學目標:能記住二倍角公式,會運用二倍角公式進行求值、化簡和證明,同時懂得這一公式在運用當中所起到的用途。培養(yǎng)觀察分析問題的能力,尋找數學規(guī)律的能力,同時注意滲透由一般到特殊的化歸的數學思想及問題轉化的數學思想。重點難點:記住二倍角公式,運用二倍角公式進行求值、化簡和證明;在運用當中如何正確恰當運用二倍角公式一、引入新課1、si
2025-11-09 16:43
【總結】第3章三角恒等變換兩角和與差的三角函數兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
2025-11-26 10:15
【總結】課題:兩角和與差的正切(1)班級:姓名:學號:第學習小組【學習目標】(差)的正切公式的推導過程;(差)的正切公式進行簡單三角函數式的化簡,求值和證明?!菊n前預習】1、求?15tan的值。2、兩角和的正切公式的推導:
2025-11-10 21:43
【總結】兩角和與差的余弦公式教學設計【教學三維目標】:理解兩角和與差的余弦公式的推導過程,熟記兩角和與差的余弦公式,運用兩角和與差的余弦公式,解決相關數學問題;培養(yǎng)學生嚴密而準確的數學表達能力;培養(yǎng)學生逆向思維和發(fā)散思維能力;2過程與方法目標:通過對公式的推導提高學生研究問題、分析問題、解決問題能力
2025-11-10 11:24
【總結】兩角和與差的余弦一、教學目標:經歷兩角和與差的余弦公式的推導過程,了解兩角和與差的余弦公式,并初步運用兩角和與差的余弦公式,解決較簡單的相關數學問題。2能力目標:培養(yǎng)學生嚴密而準確的數學表達能力;培養(yǎng)學生的觀察能力,邏輯推理能力和合作學習能力。:通過觀察、對比體會數學的對稱美和諧
2025-11-19 00:26
【總結】角的概念的推廣3月6日編者:高小燕審稿人:全組人員星期五授課類型:新授學習目標1、通過實例體會任意角的概念(包括正角、負角、零角)并會完成角的加減運算2、會表示所有與α角終邊相同的角(包括α角)3、體會運動變化觀點,深刻理解
2025-11-09 16:46
【總結】兩角和與差的正弦、余弦和正切公式兩角差的余弦公式問題提出,我們學習了哪些基本的三角函數公式?30°,45°,60°等特殊角的三角函數值可以直接寫出,利用誘導公式還可進一步求出150°,210°,315°等角的三角函
2025-11-09 12:17
【總結】第3章三角恒等變換3.1兩角和與差的三角函數3.兩角和與差的余弦思考:cos(α-β)=?有人認為cos(α-β)=cosα-cosβ,對不對?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
【總結】高中數學必修四《兩角和與差的正切》教學設計一、概述本節(jié)課為1課時,40分鐘。本節(jié)課選自《普通高中課程標準數學教科書?數學(必修四)》(人教B版)第三章《三角恒等變換》中的第三節(jié)《兩角和與差的正切》,是《兩角和與差的正余弦》的延伸,也是三角恒等變換公式的重要組成部分.教材主要通過兩角和的正弦公式及兩角和的余弦公式
【總結】兩角差的余弦公式一、當α、β為銳角時,cos(α-β)=cosαcosβ+sinαsinβ的向量證明方法.圖3證明:如圖3所示,在直角坐標系中作單位圓O,并作角α與-β,設角α的終邊與單位圓交于點P1,-β角的終邊與單位圓交于點P2,則1OP=(cosα,sinα),2OP=(cosβ,sinβ),
2025-11-25 23:46
【總結】一、自學目標:1、理解半角公式的推導過程2、會運用半角公式進行相關的運算。二、自學過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導方法是2?S與2?C兩
【總結】余弦函數圖像和性質(1)學案(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學習目標,牢記余弦函數的五個關鍵點,用五點法熟練作余弦函數的簡圖。,并用集合符號來表示;、余弦函數的圖象之間的關系,能說出函數co
2025-11-09 16:44