【總結】兩角和與差的正弦、余弦和正切公式兩角差的余弦公式問題提出,我們學習了哪些基本的三角函數(shù)公式?30°,45°,60°等特殊角的三角函數(shù)值可以直接寫出,利用誘導公式還可進一步求出150°,210°,315°等角的三角函
2024-11-18 12:17
【總結】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認為cos(α-β)=cosα-cosβ,對不對?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
2024-12-05 10:15
【總結】§2兩角和與差的三角函數(shù)2.1兩角差的余弦函數(shù)2.2兩角和與差的正弦、余弦函數(shù),)1.問題導航(1)根據(jù)α+β=α-(-β),如何由Cα-β推出Cα+β?(2)對任意角α,β,cos(α-β)=cosα-cosβ成立嗎?(3)如
2024-11-28 00:14
【總結】兩角差的余弦公式考查知識點及角度難易度及題號基礎中檔稍難公式的簡單運用1、2、4給值求值問題56、8、9、11綜合應用37、10、12131.化簡cos(45°-α)cos(α+15°)-sin(45°-α)·si
2024-12-05 01:56
【總結】兩角差的余弦公式1.下列式子中,正確的個數(shù)為()①cos(α-β)=cosα-cosβ;②cos??????π2+α=sinα;③cos(α-β)=cosαcosβ-sinαsinβ.A.0B.1C.2D.3解析:三個式子均不正確.
2024-12-05 06:46
【總結】3.1兩角和與差的三角公式習題課例1將下列sincosaxbx?化成sin()Ax??的形式(1)3sin3cosxx?;(2)3sincosxx?;(3)sin3cosxx??;(4)sin3cosxx??;(5)sincosxx?;(6)sincosxx?
2024-11-27 23:35
2024-12-09 03:40
【總結】一、選擇題1.tan75°-tan15°1+tan75°tan15°=()A.-2B.2C.-3D.3【解析】原式=tan(75°-15°)=tan60°=3.【答案】D2.已知tanα+tanβ=2,tan
2024-11-28 01:12
【總結】一、選擇題1.化簡:sin21°cos81°-cos21°sin81°=()B.-12C.32D.-32【解析】sin21°cos81°-cos21°sin81°=sin(21°-81°)=-s
【總結】學習目標1、理解以兩角差的余弦公式為基礎,推導兩角和、差正弦的方法。2、體會三角恒等變換特點的過程,理解推導過程,掌握公式的應用。學習過程1、兩角和的余弦公式:2、兩角差的余弦公式:
2024-11-27 23:36
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角差的余弦公式1.熟悉用向量的數(shù)量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用.(難點)2.熟記兩角差的余弦公式,并能靈活運用.(重點)3.兩角差的余弦公式的變形.(難點)兩角差的余弦公式公式cos(α-β)=_______
2024-12-04 20:52
【總結】兩角和與差的余弦公式【學習目標】1、理解向量法推導兩角和與差的余弦公式,并能初步運用解決具體問題;2、應用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學習重點難點】向量法推導兩角和與差的余弦公式【學習過程】(一)預習指導探究cos(α+β)≠cosα+cosβ
2024-11-20 01:05
【總結】高中數(shù)學必修四《兩角和與差的正切》教學設計一、概述本節(jié)課為1課時,40分鐘。本節(jié)課選自《普通高中課程標準數(shù)學教科書?數(shù)學(必修四)》(人教B版)第三章《三角恒等變換》中的第三節(jié)《兩角和與差的正切》,是《兩角和與差的正余弦》的延伸,也是三角恒等變換公式的重要組成部分.教材主要通過兩角和的正弦公式及兩角和的余弦公式
2024-11-18 16:43
【總結】課題:探究兩角和與差的正切教學設計課標分析①理解以兩角差的余弦公式導出的兩角和與差的正弦、余弦、正切公式,了解它們的內在聯(lián)系;②能運用上述公式進行簡單的恒等變換,,使學生進一步提高運用轉化的觀點去處理問題的自覺性,體會一般與特殊的思想,換元的思想,方程的思想等數(shù)學思想在三角恒等變換中的應用.教材分析本節(jié)課教學內容是高一(下
【總結】兩角差的余弦公式一、當α、β為銳角時,cos(α-β)=cosαcosβ+sinαsinβ的向量證明方法.圖3證明:如圖3所示,在直角坐標系中作單位圓O,并作角α與-β,設角α的終邊與單位圓交于點P1,-β角的終邊與單位圓交于點P2,則1OP=(cosα,sinα),2OP=(cosβ,sinβ),
2024-12-04 23:46