【總結(jié)】兩角和與差的正弦、余弦、正切公式新課導(dǎo)入想一想:cos15????????30sin45sin30cos45cos42621222322??????那呢?cos75cos15cos(4530)??cos75?cos(3
2025-06-06 00:45
【總結(jié)】數(shù)學(xué):“兩角差的余弦公式”教學(xué)設(shè)計一、教學(xué)內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點和交匯點上,是前面所學(xué)三角函數(shù)知識的繼續(xù)與發(fā)展,是培養(yǎng)學(xué)生推理能力和運算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎(chǔ)和出發(fā)點,公式的發(fā)現(xiàn)和證明是本節(jié)課的重點,也是難點.由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2024-11-18 21:26
【總結(jié)】、余弦、正切公式2020、12、24一、復(fù)習(xí):?)cos(????C)(???簡記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號反。二、公式的推導(dǎo)??)cos(??)](cos[???????
2024-11-18 12:17
【總結(jié)】主講老師:余弦公式復(fù)習(xí)引入?)3045cos(15cos,2330cos,2245cosooooo?????由此我們能否得到初中時我們知道復(fù)習(xí)引入?30cos45cosoo呢是不是等于?猜想:?)3045cos(15cos,2330
2024-11-09 08:12
【總結(jié)】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
2024-12-05 10:15
【總結(jié)】兩角和與差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦公式.2.會用兩角和與差的正、余弦公式進行簡單的三角函數(shù)的求值、化簡、計算等.3.熟悉兩角和與差的正、余弦公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.學(xué)習(xí)重點
2024-12-05 06:46
【總結(jié)】兩角和與差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式.2.能利用兩角和與差的正切公式進行化簡、求值、證明.3.熟悉兩角和與差的正切公式的常見變形,并能靈活應(yīng)用.學(xué)習(xí)重點:兩角和、差正切公式的推導(dǎo)過程及運用學(xué)習(xí)難點:兩角和與差正切公式的靈活運用一.
【總結(jié)】兩角和與差的正弦、余弦、正切公式重點:公式的應(yīng)用.難點:公式的推導(dǎo)及變形應(yīng)用.六個公式的特征兩角和(差)的余弦:余余、正正、符號異(即公式右端分別是α與β的余弦之積,以及正弦之積,中間的符號與左邊相反);兩角和(差)的正弦:正余、余正、符號同;兩角和(差)的正切:分子同、分母異.它們的內(nèi)在聯(lián)系如下:一、和(差)角的余弦公式
【總結(jié)】兩角和與差的正弦、余弦、正切公式一、和角與差角公式應(yīng)用的規(guī)律兩角和與差的正、余弦公式主要用于求值、化簡、證明等三角變換,常見的規(guī)律如下:①配角的方法:通過對角的“合成”與“分解”,尋找欲求角與已知角的內(nèi)在聯(lián)系,靈活應(yīng)用公式,如α=(α+β)-β,α=21(α+β)+21(α-β)等.②公式的逆用與變形公式的活用
【總結(jié)】課題兩角和與差的正弦、余弦、正切公式(二)教學(xué)目標(biāo)知識與技能理解以兩角差的余弦公式為基礎(chǔ)過程與方法推導(dǎo)兩角和、差正弦和正切公式的方法情感態(tài)度價值觀體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用重點兩角和、差正弦和正切公式的推導(dǎo)過程及運用難點兩角和與差正弦、余弦和正切公式的
【總結(jié)】課題兩角和與差的正弦、余弦、正切公式(一)教學(xué)目標(biāo)知識與技能理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法過程與方法體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用情感態(tài)度價值觀聯(lián)想觀察分析靈活運用公式重點兩角和、差正弦和正切公式的推導(dǎo)過程及運用難點兩角和與差正弦
【總結(jié)】課題:兩角和與差的余弦班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】,體會向量與三角函數(shù)之間的關(guān)系;、求值、證明【課前預(yù)習(xí)】1.已知向量),(=),(=221,1yxbyxa,夾角為?,則?ba??==2.
2024-11-20 01:05
【總結(jié)】兩角和與差的正弦、余弦、正切公式知識點及角度難易度及題號基礎(chǔ)中檔稍難兩角和與差正切公式的運用1、3、67、9給值求值(角)問題2、4、510、11綜合問題8121.與1-tan21°1+tan21°相等的是()A.tan66
【總結(jié)】教學(xué)設(shè)計:一:學(xué)習(xí)目標(biāo):二:復(fù)習(xí)引入:(1)向量的數(shù)量積(定義)__________ba??),,a11yx(?),b22yx(?則(坐標(biāo)表達式)__________ba??(2)觀察圖(一)單位圓上的點的坐標(biāo)表示p1()p2(
2024-11-18 16:43
【總結(jié)】兩角和與差的正弦、余弦、正切公式1.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos62°sin28°=sin(62°+