【總結(jié)】高中數(shù)學(xué)必修四《兩角和與差的正切》教學(xué)設(shè)計(jì)一、概述本節(jié)課為1課時(shí),40分鐘。本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)?數(shù)學(xué)(必修四)》(人教B版)第三章《三角恒等變換》中的第三節(jié)《兩角和與差的正切》,是《兩角和與差的正余弦》的延伸,也是三角恒等變換公式的重要組成部分.教材主要通過(guò)兩角和的正弦公式及兩角和的余弦公式
2024-11-18 16:43
【總結(jié)】課題:探究?jī)山呛团c差的正切教學(xué)設(shè)計(jì)課標(biāo)分析①理解以?xún)山遣畹挠嘞夜綄?dǎo)出的兩角和與差的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系;②能運(yùn)用上述公式進(jìn)行簡(jiǎn)單的恒等變換,,使學(xué)生進(jìn)一步提高運(yùn)用轉(zhuǎn)化的觀點(diǎn)去處理問(wèn)題的自覺(jué)性,體會(huì)一般與特殊的思想,換元的思想,方程的思想等數(shù)學(xué)思想在三角恒等變換中的應(yīng)用.教材分析本節(jié)課教學(xué)內(nèi)容是高一(下
【總結(jié)】?jī)山遣畹挠嘞夜揭?、?dāng)α、β為銳角時(shí),cos(α-β)=cosαcosβ+sinαsinβ的向量證明方法.圖3證明:如圖3所示,在直角坐標(biāo)系中作單位圓O,并作角α與-β,設(shè)角α的終邊與單位圓交于點(diǎn)P1,-β角的終邊與單位圓交于點(diǎn)P2,則1OP=(cosα,sinα),2OP=(cosβ,sinβ),
2024-12-04 23:46
【總結(jié)】?jī)山遣畹挠嘞夜街攸c(diǎn):兩角差的余弦公式的推導(dǎo)過(guò)程及應(yīng)用.難點(diǎn):公式的推導(dǎo)過(guò)程及應(yīng)用技巧.(1)兩角差的余弦公式是推導(dǎo)其他和(差)角公式的根源,誘導(dǎo)公式是兩角和與差的三角函數(shù)公式的特殊情況.兩角中若有的整數(shù)倍角,使用誘導(dǎo)公式會(huì)簡(jiǎn)化運(yùn)算,不需要再用兩角和與差的三角函數(shù)公式展開(kāi)來(lái)計(jì)算.(2)兩角差的余弦公式不能按照分配律展開(kāi),
2024-12-05 06:46
【總結(jié)】第三章一、選擇題1.函數(shù)y=cos2x2的最小正周期是()A.π3B.π4C.πD.2π[答案]D[解析]y=cos2x2=1+cosx2,∴函數(shù)y=cos2x2的最小正周期T=2π.2.下列各式中,值等于12的是()A.cos45°co
2024-11-28 01:11
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角差的余弦公式課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難公式的簡(jiǎn)單運(yùn)用1、2、4給值求值問(wèn)題56、8、9、11綜合應(yīng)用37、10、12131.化簡(jiǎn)cos(45°-α)cos(α+
2024-12-08 13:11
【總結(jié)】?jī)山呛团c差的正切沈陽(yáng)二中數(shù)學(xué)組(1)掌握兩角和與差的正切公式;(2)熟練應(yīng)用公式求值和證明;(3)掌握公式正,反兩方面的運(yùn)用及公式的變形運(yùn)用.*本節(jié)重點(diǎn)是公式的結(jié)構(gòu)特點(diǎn)及其推導(dǎo)方法,公式成立的條件,運(yùn)用公式求值.*本節(jié)難點(diǎn)是公式的逆向和變形運(yùn)用.學(xué)習(xí)目標(biāo)?如何用ta
2024-11-18 12:09
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角差的余弦公式學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.下列式子中,正確的個(gè)數(shù)為()①cos(α-β)=cosα-cosβ;②cos??????π2+α=sinα;③cos(α-β)=cosαcosβ-sinαsinβ.A.0B.1
2024-12-08 13:12
【總結(jié)】,[學(xué)生用書(shū)單獨(dú)成冊(cè)])[]1.下面各式,不正確的是()A.sin????π4+π3=sinπ4cosπ3+32cosπ4B.cos7π12=cosπ4cosπ3-22sinπ3C.cos????-π12=cosπ4cosπ3+64D.
2024-11-28 00:14
【總結(jié)】a·b=|a||b|cosθ向量數(shù)量積的定義是?向量與自身的內(nèi)積為?兩個(gè)單位向量的數(shù)量積等于?向量長(zhǎng)度的平方它們之間夾角的余弦函數(shù)值思考?yxoP1βP2α在直角坐標(biāo)系中,以原點(diǎn)為中心,單位長(zhǎng)度為半徑作單位圓,以原點(diǎn)為頂點(diǎn),x軸為始邊分別作角任意α,β與單位圓交于
2024-11-17 15:05
【總結(jié)】?jī)山遣畹挠嘞夜浇虒W(xué)目的:經(jīng)歷用向量數(shù)量積推導(dǎo)出兩角差的余弦公式的過(guò)程,進(jìn)一步體會(huì)向量方法的作用;掌握兩角差的余弦公式的結(jié)構(gòu)特征,并會(huì)應(yīng)用。教學(xué)重點(diǎn):兩角差的余弦公式結(jié)構(gòu)及其應(yīng)用教學(xué)難點(diǎn):兩角差的余弦公式的推導(dǎo)。教學(xué)過(guò)程一、新課引入課本P136的問(wèn)題二、新課[1、問(wèn)題的提出co
2024-12-08 22:40
【總結(jié)】19:29:2419:29:24一、新課引入問(wèn)題1:cos15°=?問(wèn)題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2024-11-17 19:44
【總結(jié)】第三章三角恒等變換兩角和與差的余弦公式【學(xué)習(xí)目標(biāo)】1、理解向量法推導(dǎo)兩角和與差的余弦公式,并能初步運(yùn)用解決具體問(wèn)題;2、應(yīng)用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見(jiàn).【學(xué)習(xí)重點(diǎn)難點(diǎn)】向量法推導(dǎo)兩角和與差的余弦公式【學(xué)習(xí)過(guò)程】(一)預(yù)習(xí)指導(dǎo)探究cos(α+β
2024-11-28 16:29
【總結(jié)】第一章一、選擇題1.-510°是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限[答案]C[解析]-510°=-720°+210°,∴-510°角與210°角終邊相同,故選C.2.與-457°角終邊
2024-11-27 23:51
【總結(jié)】數(shù)學(xué):“兩角差的余弦公式”教學(xué)設(shè)計(jì)一、教學(xué)內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)和交匯點(diǎn)上,是前面所學(xué)三角函數(shù)知識(shí)的繼續(xù)與發(fā)展,是培養(yǎng)學(xué)生推理能力和運(yùn)算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎(chǔ)和出發(fā)點(diǎn),公式的發(fā)現(xiàn)和證明是本節(jié)課的重點(diǎn),也是難點(diǎn).由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2024-11-18 21:26