【總結(jié)】兩角和與差的余弦一、教學(xué)目標(biāo):經(jīng)歷兩角和與差的余弦公式的推導(dǎo)過程,了解兩角和與差的余弦公式,并初步運用兩角和與差的余弦公式,解決較簡單的相關(guān)數(shù)學(xué)問題。2能力目標(biāo):培養(yǎng)學(xué)生嚴密而準確的數(shù)學(xué)表達能力;培養(yǎng)學(xué)生的觀察能力,邏輯推理能力和合作學(xué)習(xí)能力。:通過觀察、對比體會數(shù)學(xué)的對稱美和諧
2024-11-18 16:43
【總結(jié)】、余弦、正切公式2020、12、24一、復(fù)習(xí):?)cos(????C)(???簡記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號反。二、公式的推導(dǎo)??)cos(??)](cos[???????
2024-11-18 12:17
【總結(jié)】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(二)1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式并能應(yīng)用.(重點)2.能夠熟練地正用、逆用和變形應(yīng)用兩角和與差的正切公式.(重點、難點)兩角和與差的正切公式做一做(1)已知tanα=1
2024-12-04 18:51
【總結(jié)】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據(jù)兩角差的余弦公式推導(dǎo)出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進行化簡求值.(重點)2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號規(guī)律.(易混點)3.能正用、逆用、變形用公式進行化簡求值.
【總結(jié)】二倍角的正弦、余弦、正切公式一、三角變換中的“一致代換”法在三角變換中,“一致代換”法是一種重要的方法,所謂“一致代換”法,即在三角變換中,化“異角”“異名”“異次”為“同角”“同名”“同次”的方法.它主要包括:在三角函數(shù)式中,①如果只含同角三角函數(shù),一般應(yīng)從變化函數(shù)名稱入手,盡量化
2024-12-05 01:55
【總結(jié)】課題:兩角和與差的余弦班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】,體會向量與三角函數(shù)之間的關(guān)系;、求值、證明【課前預(yù)習(xí)】1.已知向量),(=),(=221,1yxbyxa,夾角為?,則?ba??==2.
2024-11-20 01:05
【總結(jié)】教學(xué)設(shè)計:一:學(xué)習(xí)目標(biāo):二:復(fù)習(xí)引入:(1)向量的數(shù)量積(定義)__________ba??),,a11yx(?),b22yx(?則(坐標(biāo)表達式)__________ba??(2)觀察圖(一)單位圓上的點的坐標(biāo)表示p1()p2(
【總結(jié)】兩角和與差的余弦公式教學(xué)設(shè)計【教學(xué)三維目標(biāo)】:理解兩角和與差的余弦公式的推導(dǎo)過程,熟記兩角和與差的余弦公式,運用兩角和與差的余弦公式,解決相關(guān)數(shù)學(xué)問題;培養(yǎng)學(xué)生嚴密而準確的數(shù)學(xué)表達能力;培養(yǎng)學(xué)生逆向思維和發(fā)散思維能力;2過程與方法目標(biāo):通過對公式的推導(dǎo)提高學(xué)生研究問題、分析問題、解決問題能力
2024-11-27 23:36
【總結(jié)】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認為cos(α-β)=cosα-cosβ,對不對?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
2024-12-05 10:15
【總結(jié)】 兩角和與差的正弦、余弦和正切公式 兩角差的余弦公式 學(xué)習(xí)目標(biāo) 核心素養(yǎng) .(重點) .(難點) .(重點、易混點) ,培養(yǎng)學(xué)生的邏輯推理素養(yǎng). 、求值,提升學(xué)生的數(shù)學(xué)運...
2025-04-03 04:10
【總結(jié)】兩角差的余弦公式說課稿?教材分析1、教材所處的地位和作用:《兩角差的余弦公式》是新課標(biāo)人教版數(shù)學(xué)必修四第三章第一課時的教學(xué)內(nèi)容,是本模塊第一章《三角函數(shù)》和第二章《平面向量》相關(guān)知識的延續(xù)和拓展。其中心任務(wù)是通過已學(xué)知識,探索建立兩角差的余弦公式。它不僅是前面已學(xué)的誘導(dǎo)公式的推廣,也是后面其它和(差)角公式推導(dǎo)的基礎(chǔ)和核心,具有承前啟后的作用,是本章的重點內(nèi)容之一。
2025-04-16 12:53
【總結(jié)】主講老師:余弦公式復(fù)習(xí)引入?)3045cos(15cos,2330cos,2245cosooooo?????由此我們能否得到初中時我們知道復(fù)習(xí)引入?30cos45cosoo呢是不是等于?猜想:?)3045cos(15cos,2330
2024-11-09 08:12
【總結(jié)】3.二倍角的正弦、余弦和正切公式命題方向1用倍角公式化簡例1化簡三角函數(shù)式:2cos8+2-2sin8+1.[分析]將根號下的式子化為完全平方式,再開出來運算.[解析]原式=4cos24-21+2sin4cos4=2|cos4|-2|sin4+cos4|,∵π43π2,
2024-12-05 06:46
【總結(jié)】第三章三角恒等變換兩角和與差的余弦公式【學(xué)習(xí)目標(biāo)】1、理解向量法推導(dǎo)兩角和與差的余弦公式,并能初步運用解決具體問題;2、應(yīng)用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學(xué)習(xí)重點難點】向量法推導(dǎo)兩角和與差的余弦公式【學(xué)習(xí)過程】(一)預(yù)習(xí)指導(dǎo)探究cos(α+β
2024-11-28 16:29
【總結(jié)】不用計算器,求的值.1.15°能否寫成兩個特殊角的和或差的形式?2.cos15°=cos(45°-30°)=cos45°-cos30°成立嗎?
2024-11-09 04:48