【總結(jié)】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過(guò)程,能夠綜合運(yùn)用導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運(yùn)算法則和已學(xué)過(guò)的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類簡(jiǎn)單函數(shù)的求導(dǎo)問(wèn)題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2024-11-17 23:13
【總結(jié)】1.3.3最大值與最小值【學(xué)習(xí)要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會(huì)用導(dǎo)數(shù)求某定義域上函數(shù)的最值.【學(xué)法指導(dǎo)】弄清極值與最值的區(qū)別是學(xué)好本節(jié)的關(guān)鍵.函數(shù)的最值是一個(gè)整體性的概念.函數(shù)極值是在局部上對(duì)函數(shù)值的比較,具有相對(duì)性;而函數(shù)的最值則是表示函數(shù)在整個(gè)定義域上的情況,是對(duì)
2024-11-17 23:19
【總結(jié)】1.2.3簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)【學(xué)習(xí)要求】1.了解復(fù)合函數(shù)的概念,掌握復(fù)合函數(shù)的求導(dǎo)法則.2.能夠利用復(fù)合函數(shù)的求導(dǎo)法則,并結(jié)合已經(jīng)學(xué)過(guò)的公式、法則進(jìn)行一些復(fù)合函數(shù)的求導(dǎo)(僅限于形如f(ax+b)的導(dǎo)數(shù)).【學(xué)法指導(dǎo)】復(fù)合函數(shù)的求導(dǎo)將復(fù)雜的問(wèn)題簡(jiǎn)單化,體現(xiàn)了轉(zhuǎn)化思想;學(xué)習(xí)中要通過(guò)中間變量的引入理解
【總結(jié)】1.5.3微積分基本定理【學(xué)習(xí)要求】1.直觀了解并掌握微積分基本定理的含義.2.會(huì)利用微積分基本定理求函數(shù)的積分.【學(xué)法指導(dǎo)】通過(guò)探究變速直線運(yùn)動(dòng)物體的速度與位移的關(guān)系,直觀了解微積分基本定理的含義.微積分基本定理不僅揭示了導(dǎo)數(shù)和定積分之間的內(nèi)在聯(lián)系,而且還提供了計(jì)算定積分的一種有效方法.本
【總結(jié)】本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練1.3.1單調(diào)性【學(xué)習(xí)要求】1.結(jié)合實(shí)例,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,并能夠利用單調(diào)性證明一些簡(jiǎn)單的不等式.3.會(huì)求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過(guò)三次).【學(xué)法指導(dǎo)】結(jié)合
2024-11-18 08:08
【總結(jié)】本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練1.1.1平均變化率【學(xué)習(xí)要求】1.理解并掌握平均變化率的概念.2.會(huì)求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說(shuō)明生活中的實(shí)際問(wèn)題.【學(xué)法指導(dǎo)】平均變化率可以刻畫(huà)函數(shù)值在某個(gè)范圍內(nèi)變化的快慢程度,理解
【總結(jié)】§導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.單調(diào)性課時(shí)目標(biāo)掌握導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系,會(huì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過(guò)三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間.1.導(dǎo)函數(shù)的符號(hào)與函數(shù)的單調(diào)性的關(guān)系:如果在某個(gè)區(qū)間內(nèi),函數(shù)y=f(x)的導(dǎo)數(shù)________,則函數(shù)y=f(x)這個(gè)區(qū)間上是增函數(shù);如果在某個(gè)區(qū)
2024-12-05 09:29
【總結(jié)】定積分課時(shí)目標(biāo)..分.1.定積分的概念:一般地,設(shè)函數(shù)f(x)在區(qū)間[a,b]上有意義,將區(qū)間[a,b]等分成n個(gè)小區(qū)間,每個(gè)小區(qū)間長(zhǎng)度為Δx(Δx=b-an),在每個(gè)小區(qū)間上取一點(diǎn),依次為x1,x2,…,xn,作和.Sn=f(x1)Δx+f(x2)Δx+…+
2024-12-05 03:08
【總結(jié)】第3章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入§數(shù)系的擴(kuò)充課時(shí)目標(biāo)i的必要性,了解數(shù)集的擴(kuò)充過(guò)程.中由實(shí)數(shù)集擴(kuò)展到復(fù)數(shù)集出現(xiàn)的一些基本概念.,理解復(fù)數(shù)相等的充要條件.1.復(fù)數(shù)的有關(guān)概念(1)虛數(shù)單位把平方等于-1的數(shù)用符號(hào)i表示,規(guī)定__________,i叫作虛數(shù)單位.(2
2024-12-05 09:28
【總結(jié)】§數(shù)學(xué)歸納法課時(shí)目標(biāo).2.能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題.握數(shù)學(xué)歸納法的實(shí)質(zhì)及與歸納,猜想的關(guān)系..1.?dāng)?shù)學(xué)歸納法公理對(duì)于某些________________的數(shù)學(xué)命題,可以用數(shù)學(xué)歸納法證明.2.證明步驟對(duì)于某些與正整數(shù)有關(guān)的數(shù)學(xué)命題,如果(1)當(dāng)n________
【總結(jié)】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問(wèn)題..(面積和體積等的最值)(利潤(rùn)方面最值)(功和功率等最值)解函數(shù)應(yīng)用題時(shí),要注意四個(gè)步驟:1、閱讀理解,審清題意讀題時(shí)要做到逐字逐句,讀懂題中的文字?jǐn)⑹?/span>
2024-11-17 15:20
【總結(jié)】§3計(jì)算導(dǎo)數(shù)雙基達(dá)標(biāo)?限時(shí)20分鐘?1.曲線y=xn在x=2處的導(dǎo)數(shù)為12,則n等于().A.1B.2C.3D.4解析∵y′=n·xn-1,∴y′|x=2=n·2n-1=12.∴n=3.答案C2.若函數(shù)f(x)=3
2024-12-03 00:14
【總結(jié)】1.1.2瞬時(shí)變化率——導(dǎo)數(shù)(二)【學(xué)習(xí)要求】1.理解函數(shù)的瞬時(shí)變化率——導(dǎo)數(shù)的準(zhǔn)確定義和極限形式的意義,并掌握導(dǎo)數(shù)的幾何意義.2.理解導(dǎo)函數(shù)的概念,了解導(dǎo)數(shù)的物理意義和實(shí)際意義.【學(xué)法指導(dǎo)】導(dǎo)數(shù)就是瞬時(shí)變化率,理解導(dǎo)數(shù)概念可以結(jié)合曲線切線的斜率,結(jié)合瞬時(shí)速度,瞬時(shí)加速度;函數(shù)f(x)
2024-11-17 17:03
【總結(jié)】§定積分目的要求:(1)定積分的定義(2)利用定積分的定義求函數(shù)的積分,掌握步驟(3)定積分的幾何意義(4)會(huì)用定積分表示陰影部分的面積重點(diǎn)難點(diǎn):定積分的定義是本節(jié)的重點(diǎn),定積分的幾何意義的應(yīng)用是本節(jié)的難點(diǎn)。教學(xué)內(nèi)容:定積分:一般地,設(shè)函數(shù)()fx在區(qū)間[
2024-11-19 21:26
【總結(jié)】§定積分1.曲邊梯形的面積課時(shí)目標(biāo)通過(guò)求曲邊梯形的面積和變速直線運(yùn)動(dòng)的路程,了解定積分概念建立的背景,借助于幾何直觀體會(huì)定積分的基本思想.1.曲邊梯形:由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的圖形稱為曲邊梯形.2.計(jì)算曲邊梯形面積的方法:把區(qū)間[