【總結(jié)】聽課記錄2016年11月16日授課教師葉麗麗學(xué)科數(shù)學(xué)學(xué)校班級(jí)河田中學(xué)高三(20)課題等比數(shù)列及基本概念其相關(guān)性質(zhì)課型復(fù)習(xí)課1、導(dǎo)入(由教材例題直接引入,PPT展示)1.(必修5P55習(xí)題2(1)改編)設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,若a1=1,a6=32,則S3=______
2025-04-04 05:15
【總結(jié)】§等比數(shù)列§等比數(shù)列考點(diǎn)探究·挑戰(zhàn)高考考向瞭望·把脈高考雙基研習(xí)·面對(duì)高考雙基研習(xí)?面對(duì)高考基礎(chǔ)梳理1.等比數(shù)列的相關(guān)概念及公式相關(guān)名詞等比數(shù)列{an}的相關(guān)概念及公式定義如果一個(gè)數(shù)列從第2項(xiàng)起,
2025-05-07 12:06
【總結(jié)】等比數(shù)列的概念(二)等比數(shù)列的通項(xiàng)公式(二)課時(shí)目標(biāo).,能用性質(zhì)靈活解決問題.1.一般地,如果m,n,k,l為正整數(shù),且m+n=k+l,則有______________,特別地,當(dāng)m+n=2k時(shí),am·an=________.2.在等比數(shù)列{an}中,每隔k項(xiàng)(
2024-12-05 10:14
【總結(jié)】等比數(shù)列的概念(一)等比數(shù)列的通項(xiàng)公式(一)課時(shí)目標(biāo),能夠利用定義判斷一個(gè)數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項(xiàng)公式并能簡(jiǎn)單應(yīng)用.,能夠應(yīng)用等比中項(xiàng)的定義解決有關(guān)問題.1.如果一個(gè)數(shù)列從第____項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的____都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的___
【總結(jié)】§等比數(shù)列1.課程目標(biāo)1.理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式;2.能在具體的問題情境中識(shí)別數(shù)列的等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題;3.了解等比數(shù)列與指數(shù)函數(shù)的關(guān)系.2.知識(shí)梳理(1)如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)非零常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母
2025-06-25 02:14
【總結(jié)】2.4等比數(shù)列第二課時(shí)等比數(shù)列的性質(zhì)及應(yīng)用課前預(yù)習(xí)·巧設(shè)計(jì)名師課堂·一點(diǎn)通創(chuàng)新演練·大沖關(guān)第二章數(shù)列考點(diǎn)一考點(diǎn)二課堂強(qiáng)化課下檢測(cè)考點(diǎn)三
2025-01-06 16:35
【總結(jié)】第8課時(shí)等比數(shù)列的應(yīng)用、通項(xiàng)公式、前n項(xiàng)和公式的性質(zhì).、通項(xiàng)公式、前n項(xiàng)和公式的性質(zhì)解決相關(guān)的數(shù)列問題.前面我們共同學(xué)習(xí)了等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式等基本概念,理解了累差法、歸納法、倒序相加法等,今天我們將共同探究等比數(shù)列的定義,通項(xiàng)公式,前n項(xiàng)和公式的相關(guān)性質(zhì)及其應(yīng)用,這些性質(zhì)在數(shù)列中地位重要.等比數(shù)
2024-11-18 08:09
【總結(jié)】等比數(shù)列1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復(fù)利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(1+)3,1
2024-07-30 17:18
【總結(jié)】等比數(shù)列的通項(xiàng)公式(2)班級(jí)學(xué)號(hào)姓名學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo),理解等比數(shù)列的概念,.,能運(yùn)用通項(xiàng)公式解決一些簡(jiǎn)單的實(shí)際問題。課課堂堂學(xué)學(xué)習(xí)習(xí)一、重點(diǎn)難點(diǎn):等比數(shù)列的性質(zhì)及應(yīng)用;:等比數(shù)列性質(zhì)的發(fā)現(xiàn)及推導(dǎo).課課前前準(zhǔn)準(zhǔn)
2024-11-19 23:13
【總結(jié)】第一頁,編輯于星期六:點(diǎn)三十四分。,2.5等比數(shù)列的前n項(xiàng)和第一課時(shí)等比數(shù)列前n項(xiàng)和公式,第二頁,編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十四分。,第四...
2024-10-22 18:54
【總結(jié)】第3課時(shí)等比數(shù)列的前n項(xiàng)和知能目標(biāo)解讀n項(xiàng)和公式的推導(dǎo)方法--錯(cuò)位相減法,并能用其思想方法求某類特殊數(shù)列的前n項(xiàng)和.n項(xiàng)和公式以及性質(zhì),并能應(yīng)用公式解決有關(guān)等比數(shù)列前n項(xiàng)的問題.在應(yīng)用時(shí),特別要注意q=1和q≠1這兩種情況.n項(xiàng)和公式解決有關(guān)的實(shí)際應(yīng)用問題.重點(diǎn)難點(diǎn)點(diǎn)撥重點(diǎn):掌握等比數(shù)列的求和公式,會(huì)
2024-11-19 20:39
【總結(jié)】等比數(shù)列(第1課時(shí))學(xué)習(xí)目標(biāo),理解等比數(shù)列的概念.,明確一個(gè)數(shù)列是等比數(shù)列的限定條件;能夠運(yùn)用類比的思想方法得到等比數(shù)列的定義,會(huì)推導(dǎo)等比數(shù)列的通項(xiàng)公式.合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境:定義:通項(xiàng)公式:an=a1+(n-1)d,(n∈N*).前n項(xiàng)和公式:Sn==na1+d,(n∈
2024-12-08 07:03
【總結(jié)】等比數(shù)列(第2課時(shí))學(xué)習(xí)目標(biāo)靈活應(yīng)用等比數(shù)列的定義及通項(xiàng)公式;深刻理解等比中項(xiàng)的概念;熟悉等比數(shù)列的有關(guān)性質(zhì),并系統(tǒng)了解判斷數(shù)列是否是等比數(shù)列的方法.通過自主探究、合作交流獲得對(duì)等比數(shù)列性質(zhì)的認(rèn)識(shí).充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型,體會(huì)數(shù)學(xué)是來源于現(xiàn)實(shí)生活,并應(yīng)用于現(xiàn)實(shí)生活的,數(shù)學(xué)是豐富多彩的而不是枯燥無味的,提高學(xué)習(xí)的興趣.合
2024-12-09 03:42
【總結(jié)】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座29)—等比數(shù)列一.課標(biāo)要求:1.通過實(shí)例,理解等比數(shù)列的概念;2.探索并掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式;3.能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題。體會(huì)等比數(shù)列與指數(shù)函數(shù)的關(guān)系。二.命題走向等比數(shù)列與等差數(shù)列同樣在高考中占有重要的地位,是高
2025-06-30 04:14
【總結(jié)】談一類遞推數(shù)列求通項(xiàng)公式的典型方法除了我們經(jīng)常接觸的最基本的等差數(shù)列和等比數(shù)列之外,我們還經(jīng)常遇到一類遞推數(shù)列求通項(xiàng)的問題.它的基本形式是:已知1a及遞推關(guān)系1nnapaq???((1)0)pqp??求na.其求解方法有多種,下面結(jié)合具體例子介紹三種較為典型的解法.題目:在數(shù)列{}na(不是常數(shù)數(shù)列)中,1122nn
2024-12-08 20:21