【總結】1.2任意角的三角函數(shù)1.任意角的三角函數(shù)的定義及應用在初中我們已經(jīng)學了銳角三角函數(shù),知道它們都是以銳角為自變量、邊的比值為函數(shù)值的三角函數(shù).你能用平面直角坐標系中角的終邊上的點的坐標來表示銳角三角函數(shù)嗎?改變終邊上的點的位置,這個比值會改變嗎?把角擴充為任意角,結論成立嗎?一、任意角的三角函數(shù)1.單位圓:在
2024-12-05 10:17
【總結】【金版學案】2021-2021學年高中數(shù)學第3章三角恒等變換本章知識整合蘇教版必修4網(wǎng)絡構建求值題三角函數(shù)的求值主要有兩類題型,給角求值與給值求值.給角求值一般是利用和、差、倍角公式進行變換,使其出現(xiàn)特殊角,若為非特殊角,則應變?yōu)榭上セ蚣s分的情況,從而求出其值.給值求值一般應先化簡所求的式子
2024-12-08 05:55
【總結】2021-2021學年高中數(shù)學同步訓練:第3章三角恒等變換章末檢測(蘇教版必修4)一、填空題1.(cosπ12-sinπ12)(cosπ12+sinπ12)=________.2.3tan15°+13-tan15°的值是________.3.sin163°sin223&
2024-12-04 22:29
【總結】第1章三角函數(shù)1.1任意角、弧度1.任意角你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了小時,你應當如何將它校準?當時間校準后,分針旋轉了多少度?從該問題中可以看出,要正確地表達“校準”手表的過程,需要同時說明分針的旋轉量和旋轉方向.當分針旋轉超過一周后,如何表述這
2024-12-09 03:49
【總結】1.三角函數(shù)的圖象與性質情景:前面我們學習了三角函數(shù)的誘導公式,我們是借助于單位圓推導出來的.思考:我們能否借助三角函數(shù)的圖象來推導或直接得出三角函數(shù)的一些性質呢?1.“五點法”作正弦函數(shù)圖象的五個點是__________、________、________、________、________.答案:(0,0
2024-12-08 20:24
【總結】章末過關檢測卷(三)第3章三角恒等變換(測試時間:120分鐘評價分值:150分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.sin347°cos148°+sin77°cos58°的
2024-12-05 00:28
【總結】一.選擇題(共12小題,每小題5分,共60分),則()A.B.C.D.,()A.B.C.D.3.A.B.C.D.4.A.B.C.D.5.()A.B.C.1D.,化簡()A.
2025-04-04 04:44
【總結】1.弧度制度量長度可以用米、尺、碼等不同的單位制,度量重量可以用千克、斤、磅等不同的單位制.不同的單位制能給解決問題帶來方便,角的度量是否也能用不同的單位制呢?一、弧度制的概念1.弧度制:我們把等于半徑長的圓弧所對的圓心角叫做________的角.2.正角、零角、負角的弧度數(shù).(1)正角的弧度數(shù)是一個__
【總結】第三章三角恒等變換一、選擇題1.函數(shù)y=sina+cosa的值域為().A.(0,1) B.(-1,1) C.(1,] D.(-1,)2.若0<a<b<,sina+cosa=a,sinb+cosb=b,則().A.a(chǎn)<b B.a(chǎn)>b C.a(chǎn)b<1 D.a(chǎn)b>23.若=1,則的值為().
2025-06-27 22:56
【總結】2.向量的減法上節(jié)課我們學習了向量加法的概念,并給出了求作和向量的方法.如果河水的流速為2km/n,要想船以6km/n的速度垂直駛向對岸,如何求船本身的速度和方向呢?1.與a______________的向量,叫做a的相反向量,記為________,零向量的相反向量是________.答案:長度相等
2024-12-05 10:16
2024-12-09 03:48
【總結】2.2向量的線性運算2.向量的加法情景:請看如下問題:(1)如圖(1),某人從A到B,再從B按原來的方向到C,則兩次位移的和AB→+BC→應該是________.(2)如圖(2),飛機從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應該是________.(3)如圖
【總結】雙基限時練(二十六)兩角和與差的正弦、余弦函數(shù)一、選擇題1.cos80°cos20°+sin80°sin20°的值為()A.22B.32D.-22解析cos80°cos20°+sin20°sin80°=cos60°
2024-12-04 23:46
【總結】雙基限時練(二十八)二倍角的三角函數(shù)(一)一、選擇題1.已知cos2α=14,則sin2α=()解析∵cos2α=1-2sin2α,∴sin2α=1-cos2α2=1-142=38.答案D2.已知角θ的頂點與原點重合,始邊與x軸的正半軸重合,終邊在直線
2024-12-05 06:44
【總結】雙基限時練(二十七)兩角和與差的正切函數(shù)一、選擇題°+cos15°sin15°-cos15°的值為()A.33B.2+64C.2-64D.-3解析sin15°+cos15°sin15°-cos15°=tan15