【總結(jié)】第1章三角函數(shù)1.1任意角、弧度1.任意角你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了小時(shí),你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時(shí)間校準(zhǔn)后,分針旋轉(zhuǎn)了多少度?從該問(wèn)題中可以看出,要正確地表達(dá)“校準(zhǔn)”手表的過(guò)程,需要同時(shí)說(shuō)明分針的旋轉(zhuǎn)量和旋轉(zhuǎn)方向.當(dāng)分針旋轉(zhuǎn)超過(guò)一周后,如何表述這
2024-12-09 03:49
【總結(jié)】向量減法運(yùn)算及其幾何意義一、向量減法法則的理解向量減法的三角形法則的式子內(nèi)容是:兩個(gè)向量相減,則表示兩個(gè)向量起點(diǎn)的字母必須相同(否則無(wú)法相減),這樣兩個(gè)向量的差向量是以減向量的終點(diǎn)的字母為起點(diǎn),以被減向量的終點(diǎn)的字母為終點(diǎn)的向量.只要學(xué)生理解法則內(nèi)容,那么解決起向量加減法的題來(lái)就會(huì)更加得心應(yīng)手,尤其遇到向量的式子運(yùn)算題時(shí)
2024-11-19 20:38
【總結(jié)】 第2課時(shí) 向量減法運(yùn)算及其幾何意義 與a長(zhǎng)度相等,方向相反的向量,叫作a的相反向量,記作-a. (1)零向量的相反向量仍是零向量,即-0=0. (2)任一向量與其相反向量的和...
2025-04-03 03:50
【總結(jié)】abcosab???0?知識(shí)回顧1.定義:平面內(nèi)兩個(gè)非零向量的數(shù)量積(內(nèi)積)的定義=向量夾角的概念:平移兩個(gè)非零向量使它們起點(diǎn)重合,所成圖形中0?≤?≤180?的角稱為兩個(gè)向量的夾角
2024-11-18 08:49
【總結(jié)】向量有加法,必然有減法,如何定義向量的減法?我們知道,減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)。向量減法也有類似的法則。與長(zhǎng)度相等、方向相反的向量,叫做的相反向量bb零向量的相反向量仍是零向量任一向量和它相反向量的和是零向量定義:減去一個(gè)向量等于加上這個(gè)向量的相反
2025-07-23 03:15
【總結(jié)】1.三角函數(shù)的應(yīng)用情景:如圖,某大風(fēng)車的半徑為2m,每12s旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面m,風(fēng)車圓周上一點(diǎn)A從最低點(diǎn)O開始,運(yùn)動(dòng)t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關(guān)系式嗎?你能畫出它的圖象嗎?1.已知函數(shù)類型求解析式的方法是________.答案:待
2024-12-05 10:16
【總結(jié)】向量的加法【學(xué)習(xí)目標(biāo)】;;,并會(huì)用它們進(jìn)行向量計(jì)算【學(xué)習(xí)重難點(diǎn)】重點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律難點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________
2024-11-20 01:05
【總結(jié)】向量減法運(yùn)算及其幾何意義考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量加減法運(yùn)算的綜合2、3、46用已知向量表示其他向量112向量加、減法運(yùn)算的應(yīng)用7、8、9、1113相反向量及運(yùn)用5101.四邊形ABCD中,設(shè)AB→=a,AD→=b,BC→=c,則DC→
【總結(jié)】向量減法運(yùn)算及其幾何意義1.設(shè)b是a的相反向量,則下列說(shuō)法錯(cuò)誤的是()A.a(chǎn)與b的長(zhǎng)度必相等B.a(chǎn)∥bC.a(chǎn)與b一定不相等D.a(chǎn)是b的相反向量解析:根據(jù)相反向量的定義可知,C錯(cuò)誤,因?yàn)?與0互為相反向量,但0與0相等.答案:C2.在△ABC中,BC→=a,AC→=
【總結(jié)】向量減法運(yùn)算及其幾何意義學(xué)習(xí)目標(biāo):1.理解相反向量的含義,向量減法的意義及減法法則.2.掌握向量減法的幾何意義.3.能熟練地進(jìn)行向量的加、減運(yùn)算.學(xué)習(xí)重點(diǎn):理解相反向量的含義,向量減法的意義及減法法則.學(xué)習(xí)難點(diǎn):能熟練地進(jìn)行向量的加、減運(yùn)算.一.知識(shí)導(dǎo)學(xué)1.我們把與向量a長(zhǎng)度相等且方
【總結(jié)】1.函數(shù)y=Asin(ωx+φ)的圖象情景:下表是某地1951—1981年月平均氣溫(華氏):月份123456平均氣溫月份789101112平均氣溫思考:(1)以月份為x軸,以平均氣溫為y軸,描出散點(diǎn).(2)用正弦曲線去擬合這些數(shù)據(jù).(
【總結(jié)】3.兩角和與差的正切你能根據(jù)正切函數(shù)與正弦、余弦函數(shù)的關(guān)系,從C(α±β)、S(α±β)出發(fā),推導(dǎo)出用任意角α,β的正切表示tan(α+β)、tan(α-β)的公式嗎?1.公式T(α-β)是_____________________________________
2024-12-05 10:15
2024-12-08 20:23
【總結(jié)】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認(rèn)為cos(α-β)=cosα-cosβ,對(duì)不對(duì)?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
【總結(jié)】平面向量的數(shù)量積學(xué)習(xí)目標(biāo):、夾角平面向量的數(shù)量積的定義已知兩個(gè)非零向量a和b,它們的夾角為?,我們把數(shù)量叫做a與b的數(shù)量積(或內(nèi)積),記作a·b,即?cos||||ba?c