【總結(jié)】【課堂新坐標(biāo)】(教師用書)2020-2020學(xué)年高中數(shù)學(xué)雙曲線及其標(biāo)準(zhǔn)方程課后知能檢測新人教B版選修1-1一、選擇題1.(2020·臺州高二檢測)設(shè)動點(diǎn)P到A(-5,0)的距離與它到B(5,0)距離的差等于6,則P點(diǎn)的軌跡方程是()29-y216=129-x216
2024-11-19 10:30
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)曲線的交點(diǎn)課后知能檢測蘇教版選修2-1一、填空題1.直線y=x+4與雙曲線x2-y2=1的交點(diǎn)坐標(biāo)為______.【解析】聯(lián)立方程,得?????y=x+4x2-y2=1,消去y,得x2-(x+4)2=1,即8x=-17,解
2024-12-05 03:09
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)四種命題課后知能檢測蘇教版選修1-1一、填空題1.下列語句是命題的是________.①若a>b0,則a2>b2;②a2>b2;③方程x2-x-1=0的近似根;④方程x2-x-1=0有根嗎?【解析】②③
2024-12-04 21:34
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)簡單的邏輯連結(jié)詞課后知能檢測蘇教版選修1-1一、填空題1.分別用“p或q”“p且q”“非p”填空.(1)命題“3的值不超過2”是“________”的形式;(2)命題“x=2或x=3是方程(x-2)(x-3)=0的解”是“__
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)拋物線的幾何性質(zhì)課后知能檢測蘇教版選修2-1一、填空題1.設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是________.【解析】∵p2=2,∴p=4,∴拋物線標(biāo)準(zhǔn)方程為y2=8x.【答案】y2=8x2.經(jīng)過拋物線y2=2px(
2024-12-05 09:29
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)拋物線的標(biāo)準(zhǔn)方程課后知能檢測蘇教版選修1-1一、填空題1.(20212揚(yáng)州高二檢測)拋物線y2=12x的焦點(diǎn)坐標(biāo)為________.【解析】拋物線y2=12x的焦點(diǎn)在x軸的正半軸上,且p=14,∴p2=18,故焦點(diǎn)坐標(biāo)為(18,0
2024-12-04 18:02
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)曲線與方程課后知能檢測蘇教版選修2-1一、填空題1.方程(x-2)2+(y+2)2=0表示的圖形是________.(填序號)①圓;②兩條直線;③一個(gè)點(diǎn);④兩個(gè)點(diǎn).【解析】∵(x-2)2+(y+2)2=0,∴
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)求曲線的方程課后知能檢測蘇教版選修2-1一、填空題1.已知點(diǎn)A(-5,0),B(5,0),動點(diǎn)P到A,B距離的平方和為122,則動點(diǎn)P滿足的方程是________.【解析】依題意,設(shè)動點(diǎn)P(x,y).由PA2+PB2=122,得(x+5)2
【總結(jié)】雙曲線的幾何性質(zhì)一、基礎(chǔ)過關(guān)1.雙曲線2x2-y2=8的實(shí)軸長是()A.2B.22C.4D.422.雙曲線3x2-y2=3的漸近線方程是()A.y=±3xB.y=±13xC.y=±3xD
2024-12-03 04:57
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)全稱量詞與存在量詞課后知能檢測蘇教版選修1-1一、填空題1.下列命題:①至少有一個(gè)x,使x2+2x+1=0成立;②對任意的x,都有x2+2x+1=0成立;③對任意的x,都有x2+2x+1=0不成立;④存在x,使x
【總結(jié)】高二數(shù)學(xué)備課組的絕對值平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的差等于常數(shù)的點(diǎn)的軌跡叫做雙曲線.(小于︱F1F2︱)定義:oF2F1M12222??byax12222??b
2024-11-18 12:09
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修1-1《雙曲線的簡單幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點(diǎn)、漸近線的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會用雙曲線的定義解決實(shí)際
2024-11-30 12:26
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點(diǎn)的軌跡.平面內(nèi)與兩定點(diǎn)F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點(diǎn)的軌跡是什么呢?平面內(nèi)與兩定點(diǎn)F1、F2的距離的復(fù)習(xí)|M
2024-11-19 16:21
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)函數(shù)的和、差、積、商的導(dǎo)數(shù)課后知能檢測蘇教版選修1-1一、填空題1.下列求導(dǎo)正確的是________.①(x+1x)′=1+1x2;②(log2x)′=1xln2;③(x3+ln3)′=3x2+13;④(x2cosx)′=-2xsin
2024-12-04 18:01
【總結(jié)】●教學(xué)目標(biāo)、實(shí)虛半軸、焦點(diǎn)、離心率、漸近線方程.●教學(xué)重點(diǎn)雙曲線的幾何性質(zhì)●教學(xué)難點(diǎn)雙曲線的漸近線●教學(xué)方法學(xué)導(dǎo)式●教具準(zhǔn)備幻燈片、三角板●教學(xué)過程:師:上一節(jié),我們學(xué)習(xí)了雙曲
2024-12-08 01:51