【總結(jié)】二次函數(shù)的最值問題重點(diǎn)掌握閉區(qū)間上的二函數(shù)的最值問題難點(diǎn)了解并會(huì)處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對(duì)稱軸的相對(duì)位置思想數(shù)形結(jié)合分類討論復(fù)習(xí)引入頂點(diǎn)式:y=a(x-m)2+n(a0)兩根式:y=a(x-x1)(x-x2)(a0)
2024-11-11 21:11
【總結(jié)】二次函數(shù)的最值問題舉例(附練習(xí)、答案)二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學(xué)習(xí)的重要基礎(chǔ).在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實(shí)數(shù)時(shí)的最值情況(當(dāng)時(shí),函數(shù)在處取得最小值,無最大值;當(dāng)時(shí),函數(shù)在處取得最大值,無最小值.本節(jié)我們將在這個(gè)基礎(chǔ)上繼續(xù)學(xué)習(xí)當(dāng)自變量在某個(gè)范圍內(nèi)取值時(shí),函數(shù)的最值問題.同時(shí)還將學(xué)習(xí)二次函數(shù)的最值問題在實(shí)際生活中的簡(jiǎn)單應(yīng)用.【例1】當(dāng)時(shí),求函數(shù)的最大值和
2025-06-23 21:18
【總結(jié)】1《探究二次函數(shù)在閉區(qū)間上的最值》教案教學(xué)目標(biāo):初步掌握解決二次函數(shù)在閉區(qū)間上最值問題的一般解法,總結(jié)歸納出二次函數(shù)在閉區(qū)間上最值的一般規(guī)律,會(huì)運(yùn)用二次函數(shù)在閉區(qū)間上的圖像研究相關(guān)問題。:通過實(shí)驗(yàn),觀察影響二次函數(shù)在閉區(qū)間上的最值的因素,在此基礎(chǔ)上討論探究出解決二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。、態(tài)度與價(jià)值觀:
2024-11-21 23:43
【總結(jié)】二次函數(shù)在給定區(qū)間上的最值問題【學(xué)前思考】二次函數(shù)在閉區(qū)間上取得最值時(shí)的,只能是其圖像的頂點(diǎn)的橫坐標(biāo)或給定區(qū)間的端點(diǎn).因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個(gè)因素:拋物線的開口方向、對(duì)稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項(xiàng)系數(shù)的正負(fù)有關(guān)),而關(guān)于對(duì)稱軸與給定區(qū)間的位置關(guān)系的討論是解決二次函數(shù)在給定區(qū)間上的最值問題的關(guān)鍵.
2025-03-24 06:25
【總結(jié)】閉區(qū)間上二次函數(shù)的最值問題一、?教材分析1、教學(xué)背景二次函數(shù)是重要的初等函數(shù)之一,很多問題都要化歸為二次函數(shù)來處理。二次函數(shù)又與一元二次方程、一元二次不等式有著密切的聯(lián)系,因此必須熟練掌握它的性質(zhì),并能靈活地運(yùn)用它的性質(zhì)去解決實(shí)際問題。二次函數(shù)在高考中占有重要的地位,而二次函數(shù)在閉區(qū)間上的最值在各個(gè)方面都有重要的應(yīng)用,主要考察我們分類討論和數(shù)形結(jié)合思想。這節(jié)課我們主要學(xué)會(huì)應(yīng)
2025-05-02 23:56
【總結(jié)】 九年級(jí)《二次函數(shù)的最值問題》說課稿 各位老師好: 下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析、教學(xué)反思六大方面來闡述我對(duì)這節(jié)課的分析和設(shè)計(jì): 一、教材分析 ...
2025-04-05 07:27
【總結(jié)】班級(jí)姓名2018屆初三數(shù)學(xué)培優(yōu)材料(一)函數(shù)實(shí)際應(yīng)用專題(一)例題1小華的爸爸在國(guó)際商貿(mào)城開專賣店專銷某種品牌的計(jì)算器,進(jìn)價(jià)12元∕只,售價(jià)20元∕只.為了促銷,專賣店決定凡是買10只以上的,每多買一只,,但是最低價(jià)為16元∕只.(1)顧客一次至少買多少只,才能以最低價(jià)購(gòu)買?(2)寫出當(dāng)一次購(gòu)買x只時(shí)(x>10),利潤(rùn)y
2025-06-23 13:54
【總結(jié)】二次函數(shù)課前引入二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學(xué)習(xí)的重要基礎(chǔ).在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實(shí)數(shù)時(shí)的最值情況(當(dāng)時(shí),函數(shù)在處取得最小值,無最大值;當(dāng)時(shí),函數(shù)在處取得最大值,無最小值.本節(jié)我們將在這個(gè)基礎(chǔ)上繼續(xù)學(xué)習(xí)當(dāng)自變量在某個(gè)范圍內(nèi)取值時(shí),函數(shù)的最值問題..教學(xué)目標(biāo)1、掌握含參數(shù)二次函數(shù)在有限區(qū)間求最值的方法。2、在練習(xí)中讓學(xué)生體會(huì)分類討論
2025-06-29 18:24
【總結(jié)】【做一做】請(qǐng)你畫一個(gè)周長(zhǎng)為10厘米的矩形,算算它的面積是多少?再和你的同伴比一比,發(fā)現(xiàn)了什么?同學(xué)長(zhǎng)寬面積同學(xué)3同學(xué)23厘米2厘米6平方厘米4厘米1厘米4平方厘米同學(xué)1…………長(zhǎng)和寬設(shè)置多少時(shí)矩形面積可以取到最大呢?解:設(shè)長(zhǎng)為
2025-05-12 13:52
【總結(jié)】中考?jí)狠S題精選典型例題講解 二次函數(shù)——?jiǎng)狱c(diǎn)產(chǎn)生的線段最值問題【例1】如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過A,B,C三點(diǎn)的拋物線的對(duì)稱軸為直線.(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)點(diǎn)E是拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求當(dāng)AE+CE最小時(shí)點(diǎn)E的坐標(biāo);(3)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),求當(dāng)PD+PC最小時(shí)點(diǎn)P的坐標(biāo);(4)
2025-03-24 06:23
【總結(jié)】《二次函數(shù)在閉區(qū)間上的最值問題》教學(xué)設(shè)計(jì)潼關(guān)中學(xué)郭傳濤1.教材分析二次函數(shù)是高中數(shù)學(xué)的重要內(nèi)容,是在學(xué)習(xí)了《函數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對(duì)二次函數(shù)的概念等知識(shí)進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)其它函數(shù),尤其是利用函數(shù)的圖像來研究函數(shù)的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ),而含參數(shù)的二次函數(shù)是進(jìn)入高中以后學(xué)生遇到的新的問題,雖然在初中學(xué)生接觸過二次函數(shù),但是初中的要求比
【總結(jié)】二次函數(shù)在閉區(qū)間上的最值一、知識(shí)要點(diǎn):設(shè),求在上的最大值與最小值。當(dāng)時(shí),它的圖象是開口向上的拋物線,數(shù)形結(jié)合可得在[m,n]上的最值:,的最小值是的最大值是中的較大者。若,由在上是增函數(shù)則的最小值是,最大值是若,由在上是減函數(shù)則的最大值是,最小值是當(dāng)時(shí),可類比得結(jié)論。二、例題分析歸類:(一)、正向型1
2025-06-23 13:56
2025-04-04 04:24
【總結(jié)】 優(yōu)能中學(xué)教育學(xué)習(xí)中心U-CANLearningcentreofmiddlesch
2025-05-31 22:43
【總結(jié)】深圳實(shí)驗(yàn)培訓(xùn)中心2009年暑期初二培訓(xùn)資料姓名月日第4課時(shí)二次函數(shù)的實(shí)際應(yīng)用——面積最大(小)值問題知識(shí)要點(diǎn):在生活實(shí)踐中,人們經(jīng)常面對(duì)帶有“最”字的問題,如在一定的方案中,花費(fèi)最少、消耗最低、面積最大、產(chǎn)值最高、獲利最多等;解數(shù)學(xué)題時(shí),我們也常常碰到求某個(gè)變量的最大值或最小值之類的問題,這就
2025-03-25 06:48