【總結(jié)】柯西不等式?答案:及幾種變式.、b、c、d為實數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時取等號,假設(shè))變式:.定理:設(shè)是兩個向量,則.等號成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實數(shù),求證.
2025-04-04 05:05
【總結(jié)】不等關(guān)系與不等式第二課時問題提出?a-b>0a>b?a-b=0a=b?a-b<0a<b?“差比法”比較兩個代數(shù)式大小的一般步驟如何?作差→變形→判斷符號是不夠的,為了深入研究各種背景下的不等關(guān)系,我們必須建立相關(guān)的不等式理論,這是我們需要進(jìn)一
2024-11-17 12:02
【總結(jié)】固原一中高二數(shù)學(xué)組第九周集體備課初稿教學(xué)內(nèi)容:不等關(guān)系與不等式一元二次不等式及其解法二元一次不等式(組)與簡單的線性規(guī)劃教學(xué)時間:10月21日至10月26日主備(講)人:楊彎彎課時教學(xué)設(shè)計:第一、二課時教學(xué)內(nèi)容不等關(guān)系與不等式三維目標(biāo)一、知識與技能,并
2024-11-28 18:27
【總結(jié)】不等式的性質(zhì)課件不等式的性質(zhì)(1)世界上所有的事物不等是絕對的,相等是相對的。過去我們已經(jīng)接觸過許多不等式的問題,本章我們將較系統(tǒng)地研究有關(guān)不等式的性質(zhì)、證明、解法和應(yīng)用.1.判斷兩個實數(shù)大小的充要條件對于任意兩個實數(shù)a、b,在a>b,a=b,a<b三種關(guān)系中有且僅有一種成立.判斷兩個實數(shù)大小的充要條件是:
2024-11-17 11:59
【總結(jié)】(一)教學(xué)目標(biāo)1.知識與技能:使學(xué)生感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實際背景的前提下,學(xué)習(xí)不等式的有關(guān)內(nèi)容。:以問題方式代替例題,學(xué)習(xí)如何利用不等式研究及表示不等式,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;3.情態(tài)與價值:通過學(xué)生在學(xué)習(xí)過程中的感受、體驗、認(rèn)識狀況及理解程度,注重問題情境
2024-11-18 15:56
【總結(jié)】不等關(guān)系與不等式(第一課時)【教學(xué)目標(biāo)】,鼓勵學(xué)生用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,使學(xué)生感受數(shù)學(xué)、走進(jìn)數(shù)學(xué)、改變學(xué)生的數(shù)學(xué)學(xué)習(xí)態(tài)度。2.建立不等觀念,并能用不等式或不等式組表示不等關(guān)系。3.了解不等式或不等式組的實際背景。?!局攸c難點】重點:1.通過具體的問題情景,讓學(xué)生體會不等量關(guān)系存在的普遍性及
【總結(jié)】第一課時不等關(guān)系與不等式(一)教學(xué)要求:了解現(xiàn)實世界和日常生活中存在著的不等關(guān)系;會從實際問題中找出不等關(guān)系,并能列出不等式與不等式組.教學(xué)重點:從實際問題中找出不等關(guān)系.教學(xué)難點:正確理解現(xiàn)實生活中存在的不等關(guān)系.教學(xué)過程:一、復(fù)習(xí)準(zhǔn)備:1、提問:你能回顧一下以前所學(xué)的不等關(guān)系嗎?2、討論:除了書上列舉的現(xiàn)
【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時,解集為當(dāng)時,不等式為,解集為當(dāng)時,解集為例2
2025-04-04 05:10
【總結(jié)】課題:§不等式與不等關(guān)系第1課時授課類型:新授課【教學(xué)目標(biāo)】1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學(xué)會依據(jù)具體問題的實際背景分析問題、解決問題的方法;3.情態(tài)與價值:通過解決具體問題,體
【總結(jié)】:2baab??復(fù)習(xí)引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【總結(jié)】:2baab??引入新課提問1:我們把“風(fēng)車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風(fēng)車”造型抽象成下圖.在
2024-11-19 18:20
【總結(jié)】不等關(guān)系與不等式同步測試【基礎(chǔ)練習(xí)】1.一個工程隊規(guī)定要在6天內(nèi)完成300土方的工程,第一天完成了60土方,現(xiàn)在要比原計劃至少提前兩天完成任務(wù),則以后幾天平均每天至少要完成的土方數(shù)x應(yīng)滿足的不等式為。2.限速40km∕h的路標(biāo),指示司機(jī)在前方路段行駛時,應(yīng)使汽車的速度v不超過40km∕h,寫成
2024-12-02 10:14
【總結(jié)】12不等式的定義:用不等號連接兩個解析式所得的式子,叫做不等式.說明:(1)不等號的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對數(shù)式和三角式等)(3)不等式研究的范圍是實數(shù)集R.3對于任意兩個實數(shù)a、b,在a>b,a=b,a
2024-11-17 19:45
【總結(jié)】問題探究大。數(shù)比左邊的點表示的數(shù),右邊的點表示的與表示兩個不同的實數(shù)分別與點:在數(shù)軸上不同的點 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點的位置(如圖3-1-1)可以看出a,b之間具有哪些性質(zhì)。探究2:任意給出兩個實數(shù)a,b你能想到哪些比大
2025-03-12 14:54
【總結(jié)】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質(zhì)?;仡櫨毩?xí)。,求證:最大,均為正數(shù),且,,,:設(shè) 練習(xí)cbdadcbaadcba????1練習(xí)2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加