【總結】用導數(shù)求切線方程的四種類型求曲線的切線方程是導數(shù)的重要應用之一,用導數(shù)求切線方程的關鍵在于求出切點00()Pxy,及斜率,其求法為:設00()Pxy,是曲線()yfx?上的一點,則以P的切點的切線方程為:000()()yyfxxx????.若曲線()yfx?在點00(())Pxfx,的切線平行于y軸(即
2024-11-19 23:15
【總結】導數(shù)在實際問題中的應用目標認知學習目標:1.會從幾何直觀了解函數(shù)單調(diào)性和導數(shù)的關系;能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次.2.了解函數(shù)在某點取得極值的必要條件(導數(shù)在極值點兩端異號)和充分條件();會用導數(shù)求函數(shù)的極大值、極小值,對多項式函數(shù)一般不超過三次.3.會求閉區(qū)間上函數(shù)的
2024-12-04 23:43
【總結】導數(shù)的四則運算法則一、教學目標:掌握八個函數(shù)求導法則及導數(shù)的運算法則并能簡單運用.二、教學重點:應用八個函數(shù)導數(shù)求復雜函數(shù)的導數(shù)..教學難點:商求導法則的理解與應用.三、教學過程:(一)新課1.基本初等函數(shù)的導數(shù)公式(見教材)2.導數(shù)運算法則:(1).和(或差)的導數(shù)法則1兩個函數(shù)的和(或差)的導數(shù),等
2024-12-05 01:49
【總結】變化的快慢與變化率學習目標:了解瞬時速度的定義,能夠區(qū)分平均速度和瞬時速度.能求出簡單函數(shù)在某一點的導數(shù)(瞬時變化率)學習重點:導數(shù)概念的形成,導數(shù)內(nèi)涵的理解一、自主學習[問題1]一般地,函數(shù)12(),,yfxxx?是其定義域內(nèi)不同的兩點,那么函數(shù)的變化率可以用式子表示,我們把這個式子稱為函數(shù)
2024-12-05 06:39
【總結】最大值、最小值問題學習目標:理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習慣,提高應用知識解決實際問題的能力.學習重點:求函數(shù)的最值及求實際問題的最值.學習難點:求實際問題的最值.掌握求最值的方法關鍵是嚴格套用求最值的步驟,突破難點要把實際問題“數(shù)學化”,即建立數(shù)學模型.學
2024-12-05 06:35
【總結】變化的快慢與變化率一、教學目標(1)理解瞬時速度,會運用瞬時速度的定義求物體在某一時刻的瞬時速度(2)理解瞬時變化率概念,實際背景,培養(yǎng)學生解決實際問題的能力二、教學重點、難點重點:瞬時速度,瞬時變化率概念及計算難點:瞬時變化率的實際意義和數(shù)學意義三、教學過程(一)、復習引入1、什么叫做平均變化
2024-11-19 23:16
【總結】第三章導數(shù)及其應用(時間90分鐘,滿分120分)一、選擇題(本大題共10小題,每小題5分共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.設質點M按規(guī)律s=3t2+5作直線運動,則質點M()A.在t=1時的瞬時速度為11B.在t=2時的瞬時速度為12C.在t=3時的瞬時速度為1
2024-12-05 01:51
【總結】-*-本章整合網(wǎng)絡構建專題探究變化率與導數(shù)變化率平均變化率瞬時變化率導數(shù)導數(shù)的概念導數(shù)的幾何意義導數(shù)的計算定義法公式法導數(shù)的四則運算法則
2024-11-17 08:42
【總結】第三章§2理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三看下面兩個問題:(1)三角函數(shù)都是周期函數(shù),y=tanx是三角函數(shù),所以y=tanx是周期函數(shù);(2)循環(huán)小數(shù)是有理數(shù),2·是循環(huán)小數(shù),所以2&
2024-11-18 08:08
【總結】北師大版高中數(shù)學選修2-2第三章《導數(shù)應用》一、教學目標::(1)了解實際背景中導數(shù)的含義,體會導數(shù)的思想及其內(nèi)涵在實際問題中的應用;(2)理解世界問題中的具體情境,了解解題思路和方法。2.過程與方法:通過實際問題,讓學生進一步理解導數(shù)的思想,感知導數(shù)的含義.3.情感.態(tài)度與價值觀:使學生感受到學習導數(shù)的實際背景,增強學習從生
2025-07-18 13:16
【總結】第3章導數(shù)及其應用(A)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.物體自由落體運動方程為s(t)=12gt2,g=m/s2,若當Δt無限趨近于0時,s+Δt-sΔt無限趨近于m/s,那么下面說法正確的是________.(填序號)
2024-12-05 09:21
【總結】第3章導數(shù)及其應用(B)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.直線y=kx+1與曲線y=x3+ax+b相切于點A(1,3),則b的值為________.2.已知函數(shù)f(x)=(5x+3)lnx,則f′??????13=________
【總結】變化的快慢與變化率1、本節(jié)教材的地位與作用:變化率對理解導數(shù)概念及其幾何意義有著重要作用.是導數(shù)概念產(chǎn)生的基礎.充分掌握好變化率這個概念,為順利過渡瞬時變化率,體會導數(shù)思想與內(nèi)涵做好準備工作.通過對大量實例的分析,引導學生經(jīng)歷由物理學中的平均速度到其它事例的平均變化率過程.所以變化率是一個重要的過渡性概念.對變化率概念意義的建構對導數(shù)概念的學
【總結】成才之路·數(shù)學路漫漫其修遠兮吾將上下而求索北師大版·選修1-1變化率與導數(shù)第三章章末歸納總結第三章知識結構2誤區(qū)警示3自主演練5知識梳理1題型探究4知識梳理1.平均變化率的定
2024-11-16 23:22
【總結】計算導數(shù)同步練習一,選擇題:1.曲線y=ln(2x-1)上的點到直線2x-y+3=0的最短距離是()A、5B、25C、35D、02、設P點是曲線3233???xxy上的任意一點,P點處切線傾斜角為?,則角?的取值范圍是(