【總結(jié)】復(fù)數(shù)的幾何意義【教學(xué)目標】理解復(fù)數(shù)與從原點出發(fā)的向量的對應(yīng)關(guān)系,掌握復(fù)數(shù)的向量表示,復(fù)數(shù)模的概念及求法,復(fù)數(shù)模的幾何意義;體會數(shù)形結(jié)合的思想在數(shù)學(xué)中的重要意義;體會事物間的普遍聯(lián)系.【教學(xué)重點】復(fù)數(shù)的幾何意義【教學(xué)難點】復(fù)數(shù)的模一、課前預(yù)習(xí):(閱讀教材86--87頁,完成知識點填空):實數(shù)與數(shù)軸上的點是一一對應(yīng)的,實數(shù)可以用數(shù)軸
2024-12-03 11:29
【總結(jié)】復(fù)數(shù)檢測1.若復(fù)數(shù)iziz96,29421????,則復(fù)數(shù)??izz21?的實部為2.復(fù)數(shù)z滿足??izi4321???,則?z3.復(fù)數(shù),230iz??復(fù)數(shù)z滿足003zzzz???,則?z4.已知yx,
2024-11-15 11:50
【總結(jié)】瀘州實驗中學(xué)明楊1.導(dǎo)數(shù)的幾何意義(1)切線:如圖,當點Pn(xn,f(xn))(n=1,2,3,4,…)沿著曲線f(x)趨近于點P(x0,f(x0))時,割線PPn趨近于確定的位置,這個確定位置的直線PT稱為點P處的.顯然割線P
2025-07-18 22:34
【總結(jié)】1導(dǎo)數(shù)的幾何意義311..2?????????,.,,''的幾何意義是什么呢導(dǎo)數(shù)么那附近的變化情況在數(shù)反映了函處的瞬時變化率在表示函數(shù)導(dǎo)數(shù)我們知道0000xfxxxfxxxfxf??3P1P2P3P4PTTTTPP??
2024-11-18 01:21
【總結(jié)】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點。極大
2024-11-17 23:31
【總結(jié)】 復(fù)數(shù)的幾何意義 【學(xué)習(xí)目標】 素養(yǎng)目標 學(xué)科素養(yǎng) ; 、虛軸、模等概念; . ; ; 【自主學(xué)習(xí)】 一.復(fù)平面 建立直角坐標系來表示復(fù)數(shù)的平面叫做,x軸叫做,y軸叫做.實...
2025-04-05 05:10
【總結(jié)】現(xiàn)在我們就引入這樣一個數(shù)i,把i叫做虛數(shù)單位,并且規(guī)定:(1)i2??1;(2)實數(shù)可以與i進行四則運算,在進行四則運算時,原有的加法與乘法的運算率(包括交換律、結(jié)合律和分配律)仍然成立。引入新數(shù),完善數(shù)系②復(fù)數(shù)Z=a+bi(a∈R,
2024-10-19 14:48
【總結(jié)】03數(shù)系的擴充與復(fù)數(shù)的引入,§3.1數(shù)系的擴充和復(fù)數(shù)的概念,第二課時復(fù)數(shù)的幾何意義,第一頁,編輯于星期六:點三十七分。,目標導(dǎo)向,第二頁,編輯于星期六:點三十七分。,第三頁,編輯于星期六:點三十七分。...
2024-10-22 19:04
【總結(jié)】導(dǎo)數(shù)的幾何意義自學(xué)導(dǎo)引1.導(dǎo)數(shù)的幾何意義(1)割線斜率與切線斜率設(shè)函數(shù)y=f(x)的圖象如圖所示,AB是過點A(x0,f(x0))與點B(x0+Δx,f(x0+Δx))的一條割線,此割線的斜率是ΔyΔx=f?x0+Δx
2025-07-26 02:55
【總結(jié)】回顧①平均變化率?fx121)()??fxxx2f(x函數(shù)y=f(x)的定義域為D,∈D,f(x)從x1到x2平均變化率為:②割線的斜率OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y
2024-10-19 16:25
【總結(jié)】復(fù)數(shù)代數(shù)形式的四則運算復(fù)數(shù)代數(shù)形式的乘除運算知識回顧已知兩復(fù)數(shù)z1=a+bi,z2=c+di(a,b,c,d是實數(shù))即:兩個復(fù)數(shù)相加(減)就是實部與實部,虛部與虛部分別相加(減).(1)加法法則:z1+z2=(a+c)+(b+d)i;
2024-11-19 13:11
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第2課時復(fù)數(shù)的幾何意義同步檢測北師大版選修1-2一、選擇題1.復(fù)數(shù)z與它的模相等的充要條件是()A.z為純虛數(shù)B.z是實數(shù)C.z是正實數(shù)D.z是非負實數(shù)[答案]D[解析]∵z=|z|,∴z為實數(shù)且z≥0.2.已知復(fù)數(shù)z=(
2024-12-05 16:48
【總結(jié)】一、問題引入的幾何意義是什么呢?導(dǎo)數(shù)附近的變化情況,那么在了函數(shù)處的瞬時變化率,反映在表示函數(shù)導(dǎo)數(shù)我們知道,)(')()()('0000xfxxxfxxxfxf??二、新知探究如圖,當點Pn(xn,f(xn))(n=1,2,3,4)沿著曲線f(x)趨近于點P(x0,
2025-03-12 14:54
【總結(jié)】導(dǎo)數(shù)的幾何意義回顧①平均變化率函數(shù)y=f(x)從x1到x2平均變化率為:②平均變化率的幾何意義:割線的斜率OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y121)()??
2025-07-26 05:14
【總結(jié)】【課標要求】1.了解導(dǎo)數(shù)的概念;理解導(dǎo)數(shù)的幾何意義.2.會求導(dǎo)數(shù).3.根據(jù)導(dǎo)數(shù)的幾何意義,會求曲線上某點處的切線方程.【核心掃描】1.利用導(dǎo)數(shù)的幾何意義求曲線在某點處的切線方程.(重點)2.準確理解在某點處與過某點的切線方程.(易混點)自學(xué)導(dǎo)引1.切線:如圖,當點
2025-07-21 21:55