【文章內(nèi)容簡(jiǎn)介】
0) = ax20+ c ( a ≠ 0) , ∴ x20=13,又 ∵ 0 ≤ x0≤ 1 , ∴ x0=33. 6 . 若????01(2 x + k )d x = 2 ,則 k = ________. [ 答案 ] 1 [ 解析 ] ????01 (2 x + k )d x = ( x 2 + kx )| 10 = 1 + k ∴ 1 + k = 2 , ∴ k = 1. 課堂典例講練 求下列定積分: (1)????02(3 x2+ 4 x3)d x ; (2) ∫π20sin2x2d x ; (3)????12??????x - x2+1xd x ; (4)????01- x2+ 2 x d x ; (5) ??? 11 ( x c os x - 5sin x + 2) d x . 定積分的計(jì)算 [ 思路分析 ] 先由定積分的性質(zhì)將其分解成各簡(jiǎn)單函數(shù)的定積分,再利用牛頓 — 萊布尼茲公式求解.當(dāng)原函數(shù)較難求時(shí),可考慮由其幾何意義求得. [ 規(guī)范解答 ] (1)????02(3 x2+ 4 x3)d x =????023 x2d x +????024 x3d x = x3|20+ x4|20= 24. (2) ???0π2sin2x2d x =???0π21 - c os x2d x =???0π212d x -???0π2c os x2d x =12x???? π20-12sin x???? π20 =12 ??????π2- 0 -12(1 - 0) =12 ??????π2- 1 =π - 24. (3)????12??????x - x2+1xd x =????12x d x -????12x2d x +????121xd x =x22|21-x33|21+ ln x |21 =32-73+ ln2 = ln2 -56. (4) y = - x2+ 2 x = 1 - ? x - 1 ?2 ?????? y ≥ 0 ,? x - 1 ?2+ y2= 1 , 由圖形可知:????01- x2+ 2 x =π4. ( 5) 因?yàn)?f ( x ) = x c os x - 5si n x 在 [ - 1,1] 上為奇函數(shù), 所以??? 11f ( x )d x = 0. ??? 11 ( x c os x - 5sin x + 2 ) d x =??? 112d x = 2 x |1- 1 = 4. [ 方法總結(jié) ] ( 1) 利用微積分基本定理求定積分,其關(guān)鍵是求出被積函數(shù)的原函數(shù),求一個(gè)函數(shù)的原函數(shù)與求一個(gè)函數(shù)的導(dǎo)數(shù)是互逆運(yùn)算,因 此應(yīng)注意掌握一些常見函數(shù)的導(dǎo)數(shù). ( 2) 根據(jù)積分的幾何意義可利用面積求積分. ( 3) 若 y = f ( x ) 為奇函數(shù),則?? a - af ( x )d x = 0. 求下列定積分. ( 1)????12( x2+ 2 x + 1) d x ; ( 2)????0π( sin x - c os x )d x ; ( 3)????12|3 - 2 x |d x . [ 解析 ] ( 1)????12( x2+ 2 x + 1) d x =????12x2d x +????122 x d x + ????121 d x =x