【總結(jié)】想一想?在我們實際生活中,同學(xué)們見過橢圓嗎?能舉出一些實例嗎?生活中的橢圓——仙女座星系星系中的橢圓我們一起來看看實驗操作(1)在畫圖的過程中,細(xì)繩的兩端點的位置是固定的還是運(yùn)動的?(2)在畫圖的過程中,繩子的長度變了沒有?說明了什么?(3)在畫圖的過程中,繩子長度與兩定點距離大小有怎樣的關(guān)
2024-11-24 16:08
【總結(jié)】如何精確地設(shè)計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:?求動點軌跡方程的一般步驟:(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(x,y)表示曲線上任意一點M的坐標(biāo);(2)寫出適合條件P(M);(3)用坐標(biāo)表示條件P(M),列出方程;(
2024-11-17 23:32
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修2-1《橢圓的標(biāo)準(zhǔn)方程》教學(xué)目標(biāo)?1、理解橢圓的定義明確焦點、焦距的概念?2、熟練掌握橢圓的標(biāo)準(zhǔn)方程,會根據(jù)所給的條件畫出橢圓的草圖并確定橢圓的標(biāo)準(zhǔn)方程?3、能由橢圓定義推導(dǎo)橢圓的方程4、啟發(fā)學(xué)生能夠發(fā)現(xiàn)問題和提出問題,善于獨立思考,學(xué)會分析問題和創(chuàng)造地解決問題;
2025-08-04 16:52
【總結(jié)】定義圖象方程焦點系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2024-11-19 15:32
【總結(jié)】復(fù)習(xí)與思考、標(biāo)準(zhǔn)方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于F1F2)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2C)。22221(0)yxabab????焦點在y軸上22221(0)
2024-11-18 01:24
【總結(jié)】課件制作者:羅定中學(xué)姚仕森橢圓的定義及其定理太空中有些天體運(yùn)行的軌道是橢圓形的。生活中的橢圓油罐車的橫截面是橢圓數(shù)學(xué)實驗取一條細(xì)繩,把它的兩端固定在板上的兩點,把細(xì)繩拉緊,在板上慢慢移動用鉛筆尖奎屯王新敞新疆就可以畫出一個橢圓。橢圓及其標(biāo)準(zhǔn)方程2F1FM答:兩個定點,繩長.
2024-11-17 17:35
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程(1)復(fù)習(xí)與問題1,橢圓的第一定義是什么?平面內(nèi)與兩定點F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。F1F2MM思考到平面上兩定點F1,F(xiàn)2的距離之差(小于|F1F2|)為非零常數(shù)的點的軌跡是什么?
2025-01-14 07:30
【總結(jié)】橢圓及其標(biāo)準(zhǔn)方程第一課時你能列舉幾個生活中見過的橢圓形狀的物品嗎?請同學(xué)們將一根無彈性的細(xì)繩兩端分別系在兩顆圖釘下部,并將圖釘固定,用筆繃緊細(xì)繩在紙上移動,觀察畫出的軌跡是什么曲線。繪圖紙上的三個問題1.視筆尖為動點,兩個圖釘為定點,動點到兩定點距離之和符合什么條件?其軌跡如
2024-11-17 17:38
【總結(jié)】常用邏輯用語“數(shù)學(xué)是思維的科學(xué)”邏輯是研究思維形式和規(guī)律的科學(xué).邏輯用語是我們必不可少的工具.通過學(xué)習(xí)和使用常用邏輯用語,掌握常用邏輯用語的用法,糾正出現(xiàn)的邏輯錯誤,體會運(yùn)用常用邏輯用語表述數(shù)學(xué)內(nèi)容的準(zhǔn)確性、簡捷性.下列語句的表述形式有什么特點
2024-11-18 01:22
【總結(jié)】橢圓的簡單幾何性質(zhì)212..??.,.小、對稱性和位置等包括橢圓的形狀、大程研究它的幾何性質(zhì)方下面再利用橢圓的標(biāo)準(zhǔn)橢圓的標(biāo)準(zhǔn)方程立了建出發(fā)幾何特征上面從橢圓的定義?????????.來研究橢圓的幾何性質(zhì)我們用橢圓的標(biāo)準(zhǔn)方程1012222babyax.,.,幾何性質(zhì)其特性等來研究它
2024-11-18 15:26
【總結(jié)】復(fù)習(xí)回顧:?1求動點軌跡方程的一般步驟:(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對表示曲線上任意一點M的坐標(biāo);(2)寫出適合條件P的點M的集合;(可以省略,直接列出曲線方程)(3)用坐標(biāo)表示條件P(M),列出方程(5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點(可以省略不寫,
2024-11-18 08:56
【總結(jié)】《橢圓的幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標(biāo)準(zhǔn)方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義.?過程與方法目標(biāo)?(1)復(fù)習(xí)與引入過程
2025-07-24 18:14
【總結(jié)】選修1-1橢圓及其標(biāo)準(zhǔn)方程一、選擇題1.(2021·上海)設(shè)P是橢圓x225+y216=1上的點,若F1、F2是橢圓的兩個焦點,則|PF1|+|PF2|等于()A.4B.5C.8D.10[答案]D[解析]∵橢圓長軸2a=10,∴|P
2024-11-24 22:00
【總結(jié)】橢圓及其標(biāo)準(zhǔn)方程同步練習(xí)一,選擇題:1.方程Ax2+By2=C表示橢圓的條件是()(A)A,B同號且A≠B(B)A,B同號且C與異號(C)A,B,C同號且A≠B(D)不可能表示橢圓2.已知橢圓方程為221499xy??中,F(xiàn)1,F2分別為它的兩個焦點,則下列
2024-12-05 06:35
【總結(jié)】-*-第二章圓錐曲線與方程-*-§1橢圓-*-橢圓及其標(biāo)準(zhǔn)方程首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測學(xué)習(xí)目標(biāo)思維脈絡(luò)1.了解橢圓的實際背景,理解橢圓、焦點、焦距的定義.2.掌
2024-11-16 23:27