【總結(jié)】微積分基本定理定理(微積分基本定理)如果()fx是在區(qū)間],[ba上的連續(xù)函數(shù),并且()(),Fxfx??,則)()()(aFbFdxxfba???.記:()()()|baFbFaFx??則:()()|()()bbaafxdxFxF
2024-11-17 12:01
【總結(jié)】第2課時(shí)數(shù)學(xué)歸納法的應(yīng)用雙基達(dá)標(biāo)?限時(shí)20分鐘?1.用數(shù)學(xué)歸納法證明an+bn2≥????a+b2n(a,b是非負(fù)實(shí)數(shù),n∈N+)時(shí),假設(shè)n=k命題成立之后,證明n=k+1命題也成立的關(guān)鍵是__________________.解析要想辦法出現(xiàn)ak+1+
2024-12-04 20:00
【總結(jié)】變化率問題一個(gè)變量相對(duì)于另一個(gè)變量的變化而變化的快慢程度叫做變化率.問題1氣球膨脹率我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?問題1氣球膨脹率
2024-11-18 12:13
【總結(jié)】定積分的概念:在直角坐標(biāo)系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=b因此,我們可以用這條直線L來代替點(diǎn)P附近的曲線,也就是說:在點(diǎn)P附近,曲線可以看作直線(即在很小范圍內(nèi)
【總結(jié)】第一篇:高中數(shù)學(xué)數(shù)學(xué)歸納法教案新人教A版選修4-5 教學(xué)要求:了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟,能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題,::: 一、復(fù)習(xí)準(zhǔn)備:...
2024-10-26 10:34
【總結(jié)】第一篇:江蘇省懷仁中學(xué)2014高中數(shù)學(xué)《數(shù)學(xué)歸納法》教案新人教A版選修2-2(最終版) 江蘇省懷仁中學(xué)2014高中數(shù)學(xué)《數(shù)學(xué)歸納法》教案新人教A版選修2-2 【教學(xué)目標(biāo)】 1.使學(xué)生了解歸納法,...
2025-10-13 13:21
【總結(jié)】要甜的,好吃的!從前有一位富翁想吃芒果,打發(fā)他的仆人到果園去買,并告訴他:"要甜的,好吃的,你才買."仆人拿好錢就去了.到了果園,園主說:"我這里樹上的芒果個(gè)個(gè)都是甜的,你嘗一個(gè)看."仆人說:"我嘗一個(gè)怎能知道全體呢我應(yīng)當(dāng)個(gè)個(gè)都嘗過,嘗一個(gè)買一個(gè),這樣最可
【總結(jié)】定積分的簡(jiǎn)單應(yīng)用定積分在物理中的應(yīng)用問題提出v=v(t)作變速直線運(yùn)動(dòng)的物體,在a≤t≤b時(shí)段內(nèi)行駛的路程s等于什么?1lim()()nbinaibasvvtdtnx=-==?ò物體在某時(shí)段內(nèi)的路程,利用微積分基本定理可以求定
【總結(jié)】高中蘇教選修(2-2)數(shù)學(xué)歸納法水平測(cè)試一、選擇題1.用數(shù)學(xué)歸納法證明“221nn??對(duì)于0nn≥的自然數(shù)n都成立”時(shí),第一步證明中的起始值0n應(yīng)?。ǎ〢.2B.3C.5D.6答案:C2.用數(shù)學(xué)歸納法證明不等式1111(1)2321nnnn???????
2024-12-05 03:04
【總結(jié)】《直接證明與間接證明-反證法》教學(xué)目標(biāo)?結(jié)合已經(jīng)學(xué)過的數(shù)學(xué)實(shí)例,了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點(diǎn).?教學(xué)重點(diǎn):會(huì)用反證法證明問題;了解反證法的思考過程.?教學(xué)難點(diǎn):根據(jù)問題的特點(diǎn),選擇適當(dāng)?shù)淖C明方法.經(jīng)過證明的結(jié)論一般地,從要證明的結(jié)論出發(fā),逐步尋求推證過程
【總結(jié)】《生活中的優(yōu)化問題舉例》教學(xué)目標(biāo)?掌握導(dǎo)數(shù)在生活中的優(yōu)化問題問題中的應(yīng)用?教學(xué)重點(diǎn):?掌握導(dǎo)數(shù)生活中的優(yōu)化問題問題中的應(yīng)用.規(guī)格(L)2價(jià)格(元)問題背景:飲料瓶大小對(duì)飲料公司利潤(rùn)的影響下面是某品牌飲料的三種規(guī)格不同的產(chǎn)品,若它們的價(jià)格如下表所示,則(
【總結(jié)】用數(shù)學(xué)歸納法證明不等式課前導(dǎo)引情景導(dǎo)入觀察下列式子:1+23212?,1+,35312122??47413121222???,…,則可以猜想的結(jié)論為:__________考注意到所給出的不等式的左右兩邊分子、分母與項(xiàng)數(shù)n的關(guān)系,則容易得出結(jié)論:1+??223121…+112)1(1
2024-11-20 03:13
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章4數(shù)學(xué)歸納法課時(shí)作業(yè)北師大版選修2-2一、選擇題1.用數(shù)學(xué)歸納法證明等式1+2+3+?+(n+3)=n+n+2(n∈N+)時(shí),驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()A.1B.1+2C.1+2+3D.1+2+3+4
2024-12-05 01:48
【總結(jié)】函數(shù)的極值與導(dǎo)數(shù)(a,b)內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對(duì)x∈(a,b),如果
【總結(jié)】式用數(shù)學(xué)歸納法證明不等二.納法證明不等式歸進(jìn)一步討論如何用數(shù)學(xué)下面我們結(jié)合具體例題.,,,,,,,,,:}{;,,,,,,,,,:}{.?,????????512256128643216842281644936251694112nnnnnbnaba證明你的結(jié)論小于從第幾項(xiàng)起觀察下面兩個(gè)數(shù)列例????
2024-11-17 17:34