【總結(jié)】排列組合教材分析四色問題?任意一張地圖,用一種顏色對一個(gè)地區(qū)著色,那么一共只需要四種顏色就能保證每兩個(gè)相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個(gè)村子里每一個(gè)女孩都恰好認(rèn)識k個(gè)男孩,并且每一個(gè)男孩也恰好認(rèn)識k個(gè)女孩,那么每一個(gè)女孩都可以嫁給她認(rèn)識的一個(gè)男孩,并且每一個(gè)男孩都可以娶一個(gè)他認(rèn)識的女孩.穩(wěn)定的婚姻問題?但是
2024-08-24 22:11
【總結(jié)】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元
2025-06-25 22:57
【總結(jié)】小學(xué)排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個(gè)底數(shù),哪個(gè)是指數(shù)【例1】(1)有4名學(xué)生報(bào)名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報(bào)一科,有多少種不同的報(bào)名方法?(2)有4名學(xué)生參加爭
2025-03-25 02:36
【總結(jié)】數(shù)學(xué)廣角排列組合嘉峪關(guān)市新城中心小學(xué):贠吉芳?一、教學(xué)內(nèi)容?課本第99頁知識?二、教學(xué)目標(biāo)?1、通過觀察、猜測、操作等活動吧,學(xué)會最簡單的排列和組合。?2、經(jīng)歷探索簡單事物的排列和組合規(guī)律的過程。?3、培養(yǎng)血紅色呢過有順序地全面地思考問題的意識。?4、感受數(shù)學(xué)與生活的緊密聯(lián)系,激發(fā)學(xué)生
2024-07-28 17:40
【總結(jié)】│排列、組合│知識梳理知識梳理1.排列(1)定義:從n個(gè)不同元素中任取m(m≤n)個(gè)元素,排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.(2)排列數(shù)定義:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的的個(gè)數(shù),叫做從
2024-08-14 07:24
【總結(jié)】精品資源與幾何有關(guān)的排列組合題的解法排列組合是高考的必考內(nèi)容,而與幾何有關(guān)的排列組合題在歷年的高考中也經(jīng)常出現(xiàn),此類題的常用解法主要有以下幾種:一.總體淘汰法先在弱化條件下算出總數(shù),再嚴(yán)格篩選,把少數(shù)不合條件的除去。例1.(1996年全國高考題)正六邊形的中心和頂點(diǎn)共7個(gè)點(diǎn),以其中3個(gè)點(diǎn)為頂點(diǎn)的三角形共有_________________個(gè)。
2025-03-24 05:48
【總結(jié)】正難則反總體淘汰策略例0,1,2,3,4,5,6,7,8,9這十個(gè)數(shù)字中取出三個(gè)數(shù),使其和為不小于10的偶數(shù),不同的取法有多少種?解:這問題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個(gè)數(shù)字中有5個(gè)偶數(shù)5個(gè)奇數(shù),所取的三個(gè)數(shù)含有3個(gè)偶數(shù)的取法有____,只含有
2024-08-14 07:03
【總結(jié)】1衡水市職教中心數(shù)學(xué)組韓會仿一、教學(xué)目標(biāo):(1)掌握排列組合一些常見的題型及解題方法,能夠運(yùn)用兩個(gè)原理及排列組合概念解決排列組合問題;(2)提高合理選用知識解決問題的能力.二、教學(xué)重點(diǎn)、難點(diǎn):排列、組合綜合問題.三、教學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程完成一件事,有n類辦法,在第
2024-08-14 00:31
【總結(jié)】基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題基礎(chǔ)知識1:知識結(jié)構(gòu)網(wǎng)絡(luò)圖復(fù)習(xí)名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類
2024-11-11 02:53
【總結(jié)】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問有多少不同的種法?例2:要排一個(gè)有5個(gè)獨(dú)唱節(jié)目和3個(gè)舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個(gè)舞蹈節(jié)目不連排,則不同的排法有幾種?小結(jié):當(dāng)排列或組合問題中,若某些元素或某些位置有特殊要求的時(shí)候,那么,一般先按排這些特殊元素或位置,然后再
2024-08-25 02:06
【總結(jié)】例1)...1)(1)(...1()(425xxxxxxxg?????????解其中展開式的一般項(xiàng)為,321nrrrxxxx?40,20,50,321321?????????rrrnrrr是什么數(shù)列的生成函數(shù)?.數(shù)解的個(gè)數(shù)恰為上述方程的非負(fù)整的系數(shù)nnhx的生成函數(shù)。的個(gè)數(shù)上述方程的非負(fù)整數(shù)解是所以,nhx
2025-05-12 17:10
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個(gè)原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會推以下恒等式(1);(2);(3);(4)
2024-08-14 07:38
【總結(jié)】排列組合應(yīng)用題解法綜述計(jì)數(shù)問題中排列組合問題是最常見的,由于其解法往往是構(gòu)造性的,因此方法靈活多樣,不同解法導(dǎo)致問題難易變化也較大,而且解題過程出現(xiàn)“重復(fù)”和“遺漏”的錯(cuò)誤較難自檢發(fā)現(xiàn)。因而對這類問題歸納總結(jié),并把握一些常見解題模型是必要的。基本原理組合排列排列數(shù)公式組合數(shù)
2024-08-24 22:10
【總結(jié)】引入:前面我們已經(jīng)學(xué)習(xí)和掌握了排列組合問題的求解方法,下面我們要在復(fù)習(xí)、鞏固已掌握的方法的基礎(chǔ)上,學(xué)習(xí)和討論排列、組合的綜合問題。和應(yīng)用問題。問題:解決排列組合問題一般有哪些方法?應(yīng)注意什么問題?解排列組合問題時(shí),當(dāng)問題分成互斥各類時(shí),根據(jù)加法原理,可用分類法;當(dāng)問題考慮先后次序時(shí),根據(jù)乘法原
2024-08-16 14:47
【總結(jié)】排列組合專題訓(xùn)練1.(2014?四川)六個(gè)人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ) A.192種B.216種C.240種D.288種考點(diǎn):排列、組合及簡單計(jì)數(shù)問題.菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2024-08-14 07:27