【總結(jié)】二十種排列組合問題的解法排列組合問題聯(lián)系實(shí)際生動有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認(rèn)真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉硖幚恚虒W(xué)目標(biāo).;能運(yùn)用解題策略解決簡單的綜合應(yīng)用題.提高學(xué)生解決問題分析問題的能力.復(fù)習(xí)鞏固(加法原理)完成一件事,有類辦法,在第1類辦法中
2025-03-25 02:37
【總結(jié)】完美WORD格式運(yùn)用兩個基本原理例1.n個人參加某項(xiàng)資格考試,能否通過,有多少種可能的結(jié)果?例2.同室四人各寫了一張賀年卡,先集中起來,然后每人從中拿一張別人的賀年卡,則四張賀年卡不同的分配方式有()(A)6種(B)9種
2025-03-26 05:42
【總結(jié)】可重復(fù)的排列求冪法相鄰問題捆綁法相離問題插空法元素分析法(位置分析法)多排問題單排法定序問題縮倍法(等幾率法)標(biāo)號排位問題(不配對問題)不同元素的分配問題(先分堆再分配)相同元素的分配問題隔板法:多面手問題(分類法---選定標(biāo)準(zhǔn))走樓梯問題(分類法與插空法相結(jié)合)排數(shù)問題(注意數(shù)字“0”)高☆考♂資♀源€網(wǎng)☆染色問題“至
2024-08-14 06:28
2024-07-31 23:09
【總結(jié)】小學(xué)排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學(xué)生報名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學(xué)生參加爭
2025-03-25 02:36
【總結(jié)】排列練習(xí)一、選擇題1、將3個不同的小球放入4個盒子中,則不同放法種數(shù)有()A、81B、64C、12D、142、n∈N且n55,則乘積(55-n)(56-n)……(69-n)等于()A、B、C、D、3、用1,2,3,4四個數(shù)字可以組成數(shù)字不重復(fù)的自然數(shù)的個數(shù)()A、64B
2025-06-25 23:09
【總結(jié)】范文范例參考排列組合公式/排列組合計(jì)算公式排列P------和順序有關(guān)??組合C-------不牽涉到順序的問題排列分順序,組合不分例如把5本不同的書分給3個人,有幾種分法."排列"把5本書分給3個人,有幾種分法"組合"1.排列及計(jì)算公式
2025-06-25 22:59
【總結(jié)】引入:前面我們已經(jīng)學(xué)習(xí)和掌握了排列組合問題的求解方法,下面我們要在復(fù)習(xí)、鞏固已掌握的方法的基礎(chǔ)上,學(xué)習(xí)和討論排列、組合的綜合問題。和應(yīng)用問題。問題:解決排列組合問題一般有哪些方法?應(yīng)注意什么問題?解排列組合問題時,當(dāng)問題分成互斥各類時,根據(jù)加法原理,可用分類法;當(dāng)問題考慮先后次序時,根據(jù)乘法原
2024-08-16 14:47
【總結(jié)】排列組合公式/排列組合計(jì)算公式排列P------和順序有關(guān)組合C-------不牽涉到順序的問題排列分順序,組合不分例如把5本不同的書分給3個人,有幾種分法."排列"把5本書分給3個人,有幾種分法"組合"1.排列及計(jì)算公式從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列
2024-08-14 07:21
【總結(jié)】例解排列組合中涂色問題于涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強(qiáng)且靈活多變,故這類問題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計(jì)數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①、②、③、④
【總結(jié)】排列組合問題的常見解法,分給7個班,每班至少一個,有多少種分配方案?解:因?yàn)?0個名額沒有差別,把它們排成一排.相鄰名額之間形成9個空隙.在9個空檔中選6個位置插個隔板,可把名額分成7份,對應(yīng)地分給7個班級,每一種插板方法對應(yīng)一種分法共有種分法.注:這和投信問題是不同的,投信問題的關(guān)鍵是信不同,郵筒也不同,而這里的問題是郵筒不同,但信是相同的.即班級不同,但名額都是一
2024-08-14 08:51
【總結(jié)】排列組合問題解題思路首先,怎樣分析排列組合綜合題?1)使用“分類計(jì)數(shù)原理”還是“分步計(jì)數(shù)原理”要根據(jù)我們完成某事件時采取的方式而定,分類來完成這件事時用“分類計(jì)數(shù)原理”,分步來完成這件事時就用“分步計(jì)數(shù)原理”,怎樣確定分類,還是分步驟?“分類”表現(xiàn)為其中任何一類均可獨(dú)立完成所給的事件,而“分步驟”必須把各步驟均完成才能完成所給事件,所以準(zhǔn)確理解兩個原理強(qiáng)調(diào)完成一件事情的幾類辦法互不干擾,
2024-08-14 07:40
【總結(jié)】《排列組合的綜合運(yùn)用》練習(xí)題一、選擇題:1.()A.70B.58C.56D.24,要求身高最高的在中間,且往兩邊身高依次遞減,則不同的排法有()A.18種B.20種
2025-06-19 08:47
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會推以下恒等式(1);(2);(3);(4)
2024-08-14 07:38