【總結(jié)】線性代數(shù)湖南工業(yè)大學(xué)理學(xué)院主講教師:段向陽月年92022第一章第二章第三章第四章第五章第六章第七章答案教學(xué)安排?課程學(xué)時:40學(xué)時?課程性質(zhì):基礎(chǔ)理論課?考
2025-02-19 06:24
【總結(jié)】線性代數(shù)第一章版權(quán)所有:山東理工大學(xué)理學(xué)院一、行列式的引入二、n階行列式的定義四、小結(jié)思考題§n階行列式的概念三、排列與逆序(另一表達(dá)形式)上頁下頁返回線性代數(shù)第一章版權(quán)所有:山東理工大學(xué)理學(xué)院用消元法解二元線性方程組111122121
2024-10-19 01:08
【總結(jié)】隨風(fēng)潛入夜?jié)櫸锛?xì)無聲(續(xù))李尚志中國科學(xué)技術(shù)大學(xué)2021/11/10數(shù)學(xué)實驗:幾何變換(x,y)?(x’,y’)?x’=f1(x,y),y’=f2(x,y)?曲線C:x=x(t),y=y(t)?曲線C’:x=f1(x(t),y(t)),
【總結(jié)】線性代數(shù)主講教師:王琛暉廈門理工學(xué)院數(shù)理系教材:《線性代數(shù)》(第三版)趙樹嫄主編中國人民大學(xué)出版社課件制作人:廈門理工學(xué)院數(shù)理系王琛暉第一章行列式§用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2??
2024-10-13 18:48
【總結(jié)】一、計算排列的逆序數(shù)二、計算(證明)行列式三、克拉默法則1.行列式的定義??1212()122)1;nnppppppnDaaa??????1212()121)1;nnpppppnpDaaa??????12121122()()3)1.nnnniiij
2025-08-15 20:40
【總結(jié)】§方陣的行列式一、階行列式的定義n111212122212detijnnnnnnnnnaaaaaaaaaann???????1.定性描述:稱由階方陣確定的數(shù)為階方陣的行列式,簡稱階行列式AA
2025-01-19 15:16
【總結(jié)】2021年11月10日8時25分§1矩陣的定義與運算目的要求(1)理解矩陣的定義;(2)掌握矩陣的基本運算及性質(zhì).2021年11月10日8時25分一、矩陣概念的引入???????????????????nnnnnnnnnnbxaxaxabxaxax
2024-10-16 21:34
【總結(jié)】2022~2022學(xué)年第二學(xué)期試卷(B)一、填空題(每小題4分,共20分)1.設(shè)n階方陣的行列式1,3A?則1*13.()15AA?????????n)2(3?nnA?mmB?????????????11100BA2.設(shè)與均可逆,
2025-01-17 07:32
【總結(jié)】第七節(jié)克萊姆法則???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa???????????????22112222212111212111設(shè)線性方程組,,,,21不全為零若常數(shù)項nbbb?則稱此方程組為非齊次線性方程
2024-10-04 19:42
【總結(jié)】一、選擇題1.n階行列式等于[].習(xí)題一(26頁)(A)1;(B)(-1)n-1;(C)0;(D)-1.B0111101111011111
2025-03-22 05:54
【總結(jié)】線性代數(shù)課程的性質(zhì)?線性代數(shù)是數(shù)學(xué)的一個分支,是數(shù)學(xué)的基礎(chǔ)理論課之一。它既是學(xué)習(xí)數(shù)學(xué)的必修課,也是學(xué)習(xí)其他專業(yè)課的必修課。內(nèi)容與任務(wù)?線性代數(shù)是研究有限維線性空間及其線性變換的基本理論,包括行列式、矩陣及矩陣的初等變換、線性方程組、向量組的線性相關(guān)性、相似矩陣及二次型等內(nèi)容。?
2025-02-21 15:46
【總結(jié)】1班級:時間:年月日;星期教學(xué)目的掌握特征值與特征向量的概念、求法以及性質(zhì)。掌握相似矩陣的概念和性質(zhì),理解方陣A對角化的充要條件,會用實對稱矩陣對角化的基本方法將簡單對稱矩陣對角化作業(yè)重點相似矩陣與對稱矩陣對角化練習(xí)冊第43頁-46頁第5題
2024-12-08 01:39
【總結(jié)】主講:郭智第四章線性方程組§1齊次線性方程組§2非齊次線性方程組§4-1加減消元法·消元法求解·解的存在性問題一、消元法設(shè)線性方程a11x1+a12x2+…+anxn=b1a21x1+a22x2+…+a2nxn=b2…
2024-10-16 21:32
【總結(jié)】習(xí)題設(shè)行列式,則第四行各元素余子式之和的值為.2235007022220403???D111100
2025-01-17 13:25
【總結(jié)】第二章行列式行列式在線性代數(shù)中是一個有用的工具,利用它不僅可以表述n階矩陣為可逆矩陣的條件;而且可導(dǎo)出逆矩陣公式及著名的克拉默法則。本章在二三階行列式定義的基礎(chǔ)上,歸納出一般n階行列式的定義,然后討論行列式的基本性質(zhì)及其應(yīng)用。用消元法解二元線性方程組一、二階行列式的引入方程組的解為由方程組的四
2025-01-19 10:01