【總結(jié)】本課時欄目開關(guān)填一填研一研練一練1.1.1平均變化率【學習要求】1.理解并掌握平均變化率的概念.2.會求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說明生活中的實際問題.【學法指導(dǎo)】平均變化率可以刻畫函數(shù)值在某個范圍內(nèi)變化的快慢程度,理解
2025-11-08 23:13
【總結(jié)】新課標《導(dǎo)數(shù)及其應(yīng)用》的內(nèi)容分析與教學設(shè)想摘要 本文先分析新課標對《導(dǎo)數(shù)及其應(yīng)用》在教材處理上的一些變化,接著談了一下對教學的一些設(shè)想。關(guān)健字 新課標、導(dǎo)數(shù)?????《普通高中數(shù)學課程標準(實驗)》(以下簡稱為《標準》)將《導(dǎo)數(shù)及其應(yīng)用》這部分內(nèi)容安排在選修系列1-1的第三章和選修系列2-2的第一章。雖然是選修內(nèi)容,但對絕大部分高中
2025-06-07 23:18
【總結(jié)】江蘇省響水中學高中數(shù)學第3章《導(dǎo)數(shù)及其應(yīng)用》常見函數(shù)的導(dǎo)數(shù)導(dǎo)學案蘇教版選修1-1學習目標:1.能根據(jù)導(dǎo)數(shù)的定義推導(dǎo)部分基本初等函數(shù)的導(dǎo)數(shù)公式;2.能利用導(dǎo)數(shù)公式求簡單函數(shù)的導(dǎo)數(shù).教學重點:基本初等函數(shù)的導(dǎo)數(shù)公式的應(yīng)用.課前預(yù)習:1.在上一節(jié)中,我們用割線逼近切線的方法引入了導(dǎo)數(shù)的概念,那么如何求函數(shù)的導(dǎo)數(shù)呢
2024-12-05 06:44
【總結(jié)】第1頁【輔導(dǎo)專用】共72頁2020高中數(shù)學復(fù)習講義第十二章導(dǎo)數(shù)及其應(yīng)用【知識圖解】【方法點撥】導(dǎo)數(shù)的應(yīng)用極其廣泛,是研究函數(shù)性質(zhì)、證明不等式、研究曲線的切線和解決一些實際問題的有力工具,也是提出問題、分析問題和進行理性思維訓練的良好素材。同時,導(dǎo)數(shù)是初等數(shù)學與高等
2025-10-24 16:02
【總結(jié)】本課時欄目開關(guān)畫一畫研一研章末復(fù)習課本課時欄目開關(guān)畫一畫研一研章末復(fù)習課本課時欄目開關(guān)畫一畫研一研題型一分類討論思想的應(yīng)用例1設(shè)函數(shù)f(x)=2x3-3(a-1)x2+1,其中a
【總結(jié)】1.1.2瞬時變化率——導(dǎo)數(shù)(二)【學習要求】1.理解函數(shù)的瞬時變化率——導(dǎo)數(shù)的準確定義和極限形式的意義,并掌握導(dǎo)數(shù)的幾何意義.2.理解導(dǎo)函數(shù)的概念,了解導(dǎo)數(shù)的物理意義和實際意義.【學法指導(dǎo)】導(dǎo)數(shù)就是瞬時變化率,理解導(dǎo)數(shù)概念可以結(jié)合曲線切線的斜率,結(jié)合瞬時速度,瞬時加速度;函數(shù)f(x)
2025-11-08 17:03
【總結(jié)】高中數(shù)學精講精練第十二章導(dǎo)數(shù)及其應(yīng)用【知識圖解】【方法點撥】導(dǎo)數(shù)的應(yīng)用極其廣泛,是研究函數(shù)性質(zhì)、證明不等式、研究曲線的切線和解決一些實際問題的有力工具,也是提出問題、分析問題和進行理性思維訓練的良好素材。同時,導(dǎo)數(shù)是初等數(shù)學與高等數(shù)學緊密銜接的重要內(nèi)容,體現(xiàn)了高等數(shù)學思想及方法。1
2025-08-20 20:22
【總結(jié)】(選修2-2)《導(dǎo)數(shù)及其應(yīng)用》章節(jié)測試題得分一、選擇題(共12小題,每小題5分,共60分)=x2cosx的導(dǎo)數(shù)為…………………………………………………………………【】A.y′=2xcosx-x2sinx B.y′=2xcosx+x2sinxC.y′=x2cosx-2xsinx D.y′=xcosx-x2s
2025-06-07 23:15
【總結(jié)】高中數(shù)學選修2-2主要題型1.以填空、選擇考查導(dǎo)數(shù)的概念,求函數(shù)的導(dǎo)數(shù),求函數(shù)的極、最值.2.與導(dǎo)數(shù)的幾何意義相結(jié)合的函數(shù)綜合問題,利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性或求函數(shù)的單調(diào)區(qū)間,多為中檔題.3.利用導(dǎo)數(shù)求實際問題中的最值問題,為中檔偏難題.知識結(jié)構(gòu).________22
2025-11-09 08:07
【總結(jié)】1、已知函數(shù)(I)求函數(shù)的單調(diào)區(qū)間;(II)若函數(shù)的圖象在點(2,f(2))處的切線的傾斜角為45°,函數(shù)在區(qū)間(1,3)上總是單調(diào)函數(shù),求m的取值范圍;(III)求證:。2.已知函數(shù)為自然對數(shù)的底數(shù))(1)求的單調(diào)區(qū)間,若有最值,請求出最值;(2)是否存在正常數(shù),使的圖象有且只有一個公共點,且在該公共點處有共同的切線?若存
2025-04-04 05:08
【總結(jié)】高中數(shù)學選修2----2知識點第一章導(dǎo)數(shù)及其應(yīng)用一.導(dǎo)數(shù)概念的引入1.導(dǎo)數(shù)的物理意義:瞬時速率。一般的,函數(shù)在處的瞬時變化率是,我們稱它為函數(shù)在處的導(dǎo)數(shù),記作或,即=2.導(dǎo)數(shù)的幾何意義:,我們可以看出當點趨近于時,直線與曲線相切。容易知道,割線的斜率是,當點趨近于時,函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即3.導(dǎo)函數(shù):當x變化時,便是x的一個函數(shù),我們
2025-08-05 19:28
【總結(jié)】江蘇省響水中學高中數(shù)學第3章《導(dǎo)數(shù)及其應(yīng)用》瞬時變化率導(dǎo)數(shù)(1)導(dǎo)學案蘇教版選修1-1學習目標:1.理解并掌握曲線在某一點處的切線的概念;2.理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;3.理解切線概念的實際背景,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生轉(zhuǎn)化問題的能力及數(shù)形結(jié)合思想.
【總結(jié)】江蘇省響水中學高中數(shù)學第3章《導(dǎo)數(shù)及其應(yīng)用》瞬時變化率導(dǎo)數(shù)(3)導(dǎo)學案蘇教版選修1-1學習目標:通過大量實例的分析,經(jīng)歷由平均變化率過渡到瞬時變化率的過程,了解導(dǎo)數(shù)概念的實際背景,體會導(dǎo)數(shù)的思想及其內(nèi)涵;2.會求簡單函數(shù)的導(dǎo)數(shù),通過函數(shù)圖象直觀地了解導(dǎo)數(shù)的幾何意義;3.體會建立數(shù)學模型刻畫客觀世界的“數(shù)學化
【總結(jié)】導(dǎo)數(shù)一、導(dǎo)數(shù)的概念1.導(dǎo)數(shù)的背景(1)切線的斜率;(2)瞬時速度;(3)邊際成本。如一物體的運動方程是,其中的單位是米,的單位是秒,那么物體在時的瞬時速度為_____(答:5米/秒)如果函數(shù)在開區(qū)間(a,b)內(nèi)可導(dǎo),對于開區(qū)間(a,b)內(nèi)的每一個,都對應(yīng)著一個導(dǎo)數(shù),這樣在開區(qū)間(a,b)內(nèi)構(gòu)成
2024-12-18 04:38
【總結(jié)】第1頁共30頁普通高中課程標準實驗教科書—數(shù)學[人教版]高三新數(shù)學第一輪復(fù)習教案(講座6)—函數(shù)與方程一.課標要求:1.結(jié)合二次函數(shù)的圖像,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系;2.根據(jù)具體函數(shù)的圖像,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常
2025-07-28 16:14