【總結(jié)】實驗三函數(shù)逼近一、實驗?zāi)繕?.掌握數(shù)據(jù)多項式擬合的最小二乘法。2.會求函數(shù)的插值三角多項式。二、實驗問題(1)由實驗得到下列數(shù)據(jù)試對這組數(shù)據(jù)進行曲線擬合。(2)求函數(shù)在區(qū)間上的插值三角多項式。三、實驗要求1.利用最小二乘法求問題(1)所給數(shù)據(jù)的3次、4次擬合多項式,畫出擬合曲線。2
2025-06-26 20:56
【總結(jié)】第6章?曲線擬合的最小二乘法?擬合曲線 通過觀察或測量得到一組離散數(shù)據(jù)序列,當所得數(shù)據(jù)比較準確時,可構(gòu)造插值函數(shù)逼近客觀存在的函數(shù),構(gòu)造的原則是要求插值函數(shù)通過這些數(shù)據(jù)點,即。此時,序列與是相等的?! ∪绻麛?shù)據(jù)序列,含有不可避免的誤差(或稱“噪音”),;如果數(shù)據(jù)序列無法同時滿足某特定函數(shù),,那么,只能要求所做逼近函數(shù)最優(yōu)地靠近樣點,即向量與的誤差或距離最小。
2025-06-25 15:53
【總結(jié)】1分段插值法§從上節(jié)可知,如果插值多項式的次數(shù)過高,可能產(chǎn)生Runge現(xiàn)象,因此,在構(gòu)造插值多項式時常采用分段插值的方法。一、分段線性Lagrange插值,ix設(shè)插值節(jié)點為niyi,,1,0,??函數(shù)值為],[,,11??kkkkxxxx形成一個插值區(qū)間任取兩個相鄰的節(jié)點構(gòu)造Lagrange線性插值
2025-04-29 07:50
【總結(jié)】線性回歸方程【目標引領(lǐng)】1.學(xué)習(xí)目標:了解非確定性關(guān)系中兩個變量的統(tǒng)計方法;掌握散點圖的畫法及在統(tǒng)計中的作用,掌握回歸直線方程的求解方法。2.學(xué)法指導(dǎo):①求回歸直線方程,首先應(yīng)注意到,只有在散點圖大致呈線性時,求出的回歸直線方程才有實標意義.否則,求出的回歸直線方程毫無意義.因此,對一組數(shù)據(jù)作線性回歸分析時,應(yīng)先看其散點圖是否成線性.②求回歸直線方程,關(guān)鍵在于正確
2025-04-17 13:04
【總結(jié)】第三章函數(shù)逼近1賦范空間2內(nèi)積空間3正交多項式的性質(zhì)4常用正交多項式5最佳平方逼近問題6曲線擬合的最小二乘法2021年6月14日星期一26曲線擬合的最小二乘法?背景:?離散數(shù)據(jù)的特點?數(shù)據(jù)不準確?數(shù)據(jù)多,甚至是是大量的?數(shù)據(jù)采樣一般基本上反映函數(shù)的基本性態(tài)
2025-05-09 21:14
【總結(jié)】第5次最佳平方逼近不曲線擬合的最小二乘法計算方法(NumericalAnalysis)主要內(nèi)容?最佳平方逼近?曲線擬合的最小二乘法最佳平方逼近函數(shù)逼近的類型?最佳一致逼近:使用多項式對連續(xù)函數(shù)進行一致逼近。逼近誤差使用范數(shù)|(x)s-f(x)|max||(x)s-f(x)||
2024-08-14 16:35
【總結(jié)】必修3(第二章統(tǒng)計)知識結(jié)構(gòu)收集數(shù)據(jù)(隨機抽樣)整理、分析數(shù)據(jù)估計、推斷簡單隨機抽樣分層抽樣系統(tǒng)抽樣用樣本估計總體變量間的相關(guān)關(guān)系用樣本的頻率分布估計總體分布用樣本數(shù)字特征估計總體數(shù)字特征線性回歸分
2025-05-12 22:06
【總結(jié)】程方歸回性線42.黃建忠制作:,如下兩類變量之間的常見關(guān)系有在實際問題中.,,.,表示可以用函數(shù)定性函數(shù)關(guān)系確是間就之與半徑圓的面積例如函數(shù)表示變量之間的關(guān)系可以用一類是確定性函數(shù)關(guān)系2rSrS??..,,,.,.,,溫之間具有相關(guān)關(guān)系的問題中熱茶銷量與氣下面間的關(guān)系表示身高與體重之函數(shù)來嚴格地個用一不能但重體重越高
2025-05-09 22:30
【總結(jié)】1iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?第三章插值法和最小二乘法插值法
2025-05-13 09:59
【總結(jié)】我們的任務(wù)是,在給定X和Y的一組觀測值(X1,Y1),(X2,Y2),...,(Xn,Yn)的情況下,如何求出Yt=?+?Xt+ut中?和?的估計值,使得擬合的直線為最佳。一元線性回歸的最小二乘估計直觀上看,也就是要求在X和Y的散點圖上穿過各
2025-05-11 20:13
【總結(jié)】線性回歸方程——非線性方程轉(zhuǎn)化為線性方程例1.(2015·高考全國卷Ⅰ)某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費xi和年銷售量yii=1,2,?,8數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.xyw563146
2024-08-14 15:25
【總結(jié)】線性回歸方程(1)授課人:周仁華一、基礎(chǔ)知識回顧1、基本概念(1)常見變量間的關(guān)系①②一類是確定性函數(shù)關(guān)系,變量間的關(guān)系可以用函數(shù)表示一類是相關(guān)關(guān)系,變量之間有一定的聯(lián)系,但不能完全用一個函數(shù)表達式來表示(2)、散點圖:將n個數(shù)據(jù)點描在直角坐標系中組成的圖形2、回歸方程(1)最小平方法
2025-05-03 01:34
【總結(jié)】最小二乘法擬合任意次曲線(C#)說明:代碼較為簡潔沒有過多的說明,如有不明白之處可查閱相關(guān)最小二乘法計算步驟資料和求解線性方程組的資料。另外該方法只能實現(xiàn)二元N次擬合,多元方程不適用。以下是最小二乘法類的實現(xiàn):publicclassMatrixEquation{privatedouble[,]gaussMatrix;
2025-06-24 18:01
【總結(jié)】數(shù)學(xué)系UniversityofScienceandTechnologyofChinaDEPARTMENTOFMATHEMATICS第3章曲線擬合的最小二乘法給出一組離散點,確定一個函數(shù)逼近原函數(shù),插值是這樣的一種手段。在實際中,數(shù)據(jù)不可避免的會有誤差,插值函數(shù)會將這些誤差也包括在內(nèi)。因此,我們
2024-07-29 09:54
【總結(jié)】線性回歸方程(1)問題情境1客觀事物是相互聯(lián)系的,存在著一種確定性關(guān)系,過去研究的大多數(shù)是因果關(guān)系。你能舉出一些這樣的事例嗎?但實際上更多存在的是一種非因果關(guān)系即非確定性關(guān)系——相關(guān)關(guān)系。你能舉出一些這樣的事例嗎?某小賣部為了了解熱茶銷售量與氣溫之間的關(guān)系,隨機統(tǒng)計并制作了某6天賣出熱茶的杯
2024-11-18 07:35