【總結(jié)】圓錐曲線大題1、如圖,已知點P是y軸左側(cè)(不含y軸)一點,拋物線C:y2=4x上存在不同的兩點A,B滿足PA,PB的中點均在C上.(Ⅰ)設(shè)AB中點為M,證明:PM垂直于y軸;(Ⅱ)若P是半橢圓x2+=1(x0)上的動點,求△PAB面積的取值范圍.:(1)略;(2).解答:(1)設(shè),,,則中點為,由中點在拋物線上,可得,化簡得,顯然,且對也有,所以是
2025-04-17 05:29
【總結(jié)】2019全國高考-圓錐曲線部分匯編(2019北京理數(shù))(4)已知橢圓(a>b>0)的離心率為,則(A)a2=2b2 (B)3a2=4b2 (C)a=2b (D)3a=4b(2019北京理數(shù))(18)(本小題14分)已知拋物線C:x2=?2py經(jīng)過點(2,?1).(Ⅰ)求拋物線C的方程及其準(zhǔn)線方程;(Ⅱ)設(shè)O為原點,過拋物線C的焦點作斜率不為0的直線l交
2025-08-05 00:40
【總結(jié)】簡化解析幾何的若干途徑AFMCDN22xy1:AB1,251632ABm(m10),MABMy5???例已知線段的兩端點在橢圓+=上滑動且為的中點,求到軸的最大距離.BO2:y8xA
2025-07-25 15:20
【總結(jié)】.高考二輪復(fù)習(xí)專項:圓錐曲線大題集1.如圖,直線l1與l2是同一平面內(nèi)兩條互相垂直的直線,交點是A,點B、D在直線l1上(B、D位于點A右側(cè)),且|AB|=4,|AD|=1,M是該平面上的一個動點,M在l1上的射影點是N,且|BN|=2|DM|.(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求動點M的軌跡C的方程.(Ⅱ)過點D且不與l1、l2垂直的直線l交(Ⅰ
2025-07-24 20:10
【總結(jié)】2019高考數(shù)學(xué)考前3個月(上)專題練習(xí)限時規(guī)范訓(xùn)練-直線圓錐曲線(推薦時間:50分鐘)一、選擇題1.由橢圓+y2=1旳左焦點作傾斜角為45176。旳直線l交橢圓于A,B兩點,設(shè)O為坐標(biāo)原點,則183。等于 ( )A.0 B.1C.- D.-32.設(shè)雙曲線-=1旳一條漸近線與拋物線y=x2+1只有一個公共點
2025-08-05 00:20
【總結(jié)】完美WORD格式高三文科數(shù)學(xué)專題復(fù)習(xí)之圓錐曲線知識歸納:名稱橢圓雙曲線圖象定義平面內(nèi)到兩定點的距離的和為常數(shù)(大于)的動點的軌跡叫橢圓即當(dāng)2﹥2時,軌跡是橢圓,當(dāng)2=2時,軌跡是一條線段當(dāng)2﹤
2025-04-17 12:47
【總結(jié)】學(xué)科:數(shù)學(xué)復(fù)習(xí)內(nèi)容:圓錐曲線【知能目標(biāo)】,橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),雙曲線的標(biāo)準(zhǔn)方程,雙曲線的幾何性質(zhì),等軸雙曲線與共軛雙曲線的定義,拋物線的標(biāo)準(zhǔn)方程,拋物線的幾何性質(zhì);【綜合脈絡(luò)】【知識歸納】一、橢圓1.定義(1)第一定義:若F1,F(xiàn)2是兩定點,P為動點,且(為常數(shù))則P點的軌跡是橢圓。(2)第二定
2025-01-14 04:02
【總結(jié)】.圓錐曲線大題題型歸納基本方法:1.待定系數(shù)法:求所設(shè)直線方程中的系數(shù),求標(biāo)準(zhǔn)方程中的待定系數(shù)、、、、等等;2.齊次方程法:解決求離心率、漸近線、夾角等與比值有關(guān)的問題;3.韋達(dá)定理法:直線與曲線方程聯(lián)立,交點坐標(biāo)設(shè)而不求,用韋達(dá)定理寫出轉(zhuǎn)化完成。要注意:如果方程的根很容易求出,就不必用韋達(dá)定理,而直接計算出兩個根;4.點差法:弦中點問題,端點坐標(biāo)設(shè)而不求。也叫五
2025-07-25 00:14
【總結(jié)】圓錐曲線大題題型歸納基本方法:1.待定系數(shù)法:求所設(shè)直線方程中的系數(shù),求標(biāo)準(zhǔn)方程中的待定系數(shù)、、、、等等;2.齊次方程法:解決求離心率、漸近線、夾角等與比值有關(guān)的問題;3.韋達(dá)定理法:直線與曲線方程聯(lián)立,交點坐標(biāo)設(shè)而不求,用韋達(dá)定理寫出轉(zhuǎn)化完成。要注意:如果方程的根很容易求出,就不必用韋達(dá)定理,而直接計算出兩個根;4.點差法:弦中點問題,端點坐標(biāo)設(shè)而不求。也叫五條
2025-03-25 00:03
【總結(jié)】專題十六圓錐曲線1.雙曲線的焦距是10,則實數(shù)的值是()A.B.4C.16D.812.橢圓的右焦點到直線的距離是()A.B.C.1D.3.若雙曲線的一條準(zhǔn)線與拋物線的準(zhǔn)線重合,則雙曲線的離心率為()A.
2025-08-18 17:18
【總結(jié)】《圓錐曲線定義》專題練習(xí)----QCL1.已知橢圓的兩個焦點為,,且,弦AB過點,則△的周長為()A.10 D.2.過雙曲線的右焦點F2有一條弦PQ,|PQ|=7,F1是左焦點,那么△F1PQ的周長為()B. C. D.3.為常數(shù),若動點滿足,則點的軌跡所在的曲線是()A.橢圓B.
2025-06-07 17:16
【總結(jié)】高三數(shù)學(xué)圓錐曲線專題一.知識要點1、直線的斜率公式:(為直線的傾斜角)兩種常用的直線方程:(1)點斜式(2)斜截式2、直線與圓的位置關(guān)系有:相交、相切、相離三種,其判斷方法有:①幾何法(常用方法)若圓心到直線的距離為直線與圓相切直線與圓相交直線與圓相離②代數(shù)法由直線方程與圓的方
2025-04-17 01:46
【總結(jié)】圓錐曲線2020年理科高考解答題薈萃1.(2020浙江理)已知橢圓1C:221(0)yxabab????的右頂點為(1,0)A,過1C的焦點且垂直長軸的弦長為1.(I)求橢圓1C的方程;(II)設(shè)點P在拋物線2C:2()yxhh???R上,2C在點P處的切線與1C交于點,
2025-07-27 14:17
【總結(jié)】【高考總復(fù)習(xí)】圓錐曲線概念方法技巧總結(jié):定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時,軌跡是線段FF,當(dāng)常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩條射線,若﹥|FF|,則軌跡
2025-04-16 12:14
【總結(jié)】圓錐曲線,,直線與其相交于兩點,中點的橫坐標(biāo)為,則此雙曲線的方程是A.B.C.D.21.(本小題滿分14分)已知常數(shù),向量,,,經(jīng)過原點以為方向向量的直線與經(jīng)過定點以為方向向量的直線相交于點,:是否存在兩個定點,,求出的坐標(biāo);若不存在,說明理由.
2025-04-17 07:02