【總結(jié)】平面內(nèi)到兩定點F1、F2距離之和為常數(shù)2a(①)的點的軌跡叫橢圓.有|PF1|+|PF2|=2a.在定義中,當(dāng)②時,表示線段F1F2;當(dāng)③時,不表示任何圖形.2a>|F1F2|2a=|F1F2|2a<
2025-08-09 15:25
【總結(jié)】義龍一中2015-2016學(xué)年度期末圓錐曲線復(fù)習(xí)卷學(xué)校:___________姓名:___________班級:___________考號:___________一、選擇題(每小題5分,一共60分)1.已知橢圓的一個焦點為F(0,1),離心率,則該橢圓的標(biāo)準(zhǔn)方程為()A.B.C.D.2.已知橢圓的長軸在軸上,且焦距為4
2025-08-05 04:46
【總結(jié)】圓錐曲線復(fù)習(xí)(二)數(shù)學(xué)高二年級例1已知雙曲線的中心在原點,且一個焦點為F,直線與其相交于M、N兩點,MN中點的橫坐標(biāo)為,則此雙曲線的方程是______.解:解得所求雙曲線方程例2橢圓
2024-11-06 23:19
【總結(jié)】圓錐曲線復(fù)習(xí)(一)數(shù)學(xué)高二年級例1已知圓C:(x-a)2+(y-2)2=4及直線l:x-y+3=0,當(dāng)直線l被圓C截得的弦長為時,則a=________.解出解:由平面幾何知:圓心到直線的距離為1,由點到直線的距離公式得CBAD例2已知拋物線
2024-11-06 19:11
【總結(jié)】此片論文先獲《華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院2014—2015年度課程論文》比賽一等獎后發(fā)于《數(shù)學(xué)學(xué)習(xí)與研究》期刊2016年01期所屬欄目:解題技巧與方法解圓錐曲線大題的精髓——設(shè)而不求侯勝哲(華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)學(xué)院,廣州)摘要:主要針對高中成績在中等的學(xué)生,讓他們對解圓錐曲線大題有一定方向性的認識,,對老師有教學(xué)參考價值,希望老師先將復(fù)雜問題簡化,先解決
2025-03-25 07:47
【總結(jié)】高考數(shù)學(xué)圓錐曲線部分知識點梳理一、圓:1、定義:點集{M||OM|=r},其中定點O為圓心,定長r為半徑.2、方程:(1)標(biāo)準(zhǔn)方程:圓心在c(a,b),半徑為r的圓方程是(x-a)2+(y-b)2=r2圓心在坐標(biāo)原點,半徑為r的圓方程是x2+y2=r2(2)一般方程:①當(dāng)D2+E2-4F>0時,一元二次方程x2+y2+Dx+Ey+F=0
2025-06-24 02:09
【總結(jié)】大慶目標(biāo)教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-04 14:02
【總結(jié)】圓錐曲線小結(jié)與復(fù)習(xí)一東莞中學(xué)松山湖學(xué)校劉建軍審核安徽涇縣中學(xué)查日順軌跡方程的求解問題:(1)建系(2)設(shè)點(3)列式(4)代換(5)化簡(6)證明(略)注:驗證常用思路:化簡是否同解變形;是否滿足題意;特殊點是否成立:(1)直接法;(2)待
2025-07-25 03:46
【總結(jié)】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準(zhǔn)線方程、焦點坐標(biāo)等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【總結(jié)】1圓錐曲線橢圓雙曲線拋物線定義標(biāo)準(zhǔn)方程幾何性質(zhì)直線與圓錐曲線的位置關(guān)系一、知識點框架2雙曲線的定義:1212||||||2,(02||)MFMFaaFF????橢圓的定義:|)|2(,2||||2
2025-08-15 23:07
【總結(jié)】圓錐曲線―概念、方法、題型、及應(yīng)試技巧總結(jié):(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)2a,且此常數(shù)2a一定要大于21FF,當(dāng)常數(shù)等于21FF時,軌跡是線段F1F2,當(dāng)常數(shù)小于21FF時,無軌跡;雙曲線中,與兩定點F1,F(xiàn)2的距離的差的絕對值等
2025-01-08 20:52
【總結(jié)】WORD資料可編輯1、在長方體中,,過、、三點的平面截去長方體的一個角后,得如圖所示的幾何體,且這個幾何體的體積為.(1)求棱的長;(2)若的中點為,求異面直線與所成角的余弦值.【答案】(1);(2).試題分析:(1)設(shè),由題意得,可求出棱長;(2)因為
2025-06-25 00:21
【總結(jié)】WORD資料可編輯高考二輪復(fù)習(xí)專項:圓錐曲線大題集1.如圖,直線l1與l2是同一平面內(nèi)兩條互相垂直的直線,交點是A,點B、D在直線l1上(B、D位于點A右側(cè)),且|AB|=4,|AD|=1,M是該平面上的一個動點,M在l1上的射影點是N,且|BN|=2|DM|.
2025-07-25 01:24
【總結(jié)】......高考二輪復(fù)習(xí)專項:圓錐曲線大題集1.如圖,直線l1與l2是同一平面內(nèi)兩條互相垂直的直線,交點是A,點B、D在直線l1上(B、D位于點A右側(cè)),且|AB|=4,|AD|=1,M是該平面上的一個動點,M在l1上的射影點是
2025-04-16 23:07
【總結(jié)】......圓錐曲線綜合復(fù)習(xí)題精選.已知圓與拋物線的準(zhǔn)線相切,則p的值為 C. .已知圓與拋物線的準(zhǔn)線相切,則m=(A)±2(B)(C)(D)±