【總結(jié)】§隨機向量函數(shù)的分布,(,)D.r.v.XYgxy(),是一個二元函數(shù),(,)(,)gXYXY則作為的函數(shù)是一個離散型隨機變量,(,)~{,},,1,2,,ijijXYPXxYypij????(
2024-08-20 10:39
【總結(jié)】模塊六向量代數(shù)與空間解析幾何(一)向量代數(shù)1.理解向量的概念,掌握向量的表示法,會求向量的模、非零向量的方向余弦和非零向量在軸上的投影。2.掌握向量的線性運算(加法運算與數(shù)量乘法運算),會求向量的數(shù)量積與向量積。3.會求兩個非零向量的夾角,掌握兩個非零向量平行、垂直的充分必要條件。(二)平面與直線1.會求平面的點法
2025-01-19 01:01
【總結(jié)】微積分Ⅰ1第七章向量代數(shù)與空間解析幾何§曲面及其方程一、曲面方程的概念二、柱面四、二次曲面三、旋轉(zhuǎn)曲面五、小結(jié)微積分Ⅰ2第七章向量代數(shù)與空間解析幾何水桶的表面、臺燈的罩子面等.曲面在空間解析幾何中被看成是點的幾何軌跡.1、曲面方程的定義曲面的實例:
2025-01-19 08:41
【總結(jié)】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-04 17:17
【總結(jié)】空間向量的正交分解及其坐標(biāo)表示xyoxyozpABijpABCQP=xi+yjP=xi+yj+zkp=(x,y,z)p=(x,y)在空間中,如果用任意三個不共面的向量a,b,c代替兩兩垂直的向量i,j,k,你能得到類似的結(jié)論嗎?
2025-06-12 19:02
【總結(jié)】課前探究學(xué)習(xí)課堂講練互動活頁規(guī)范訓(xùn)練掌握空間向量夾角的概念及表示方法,掌握兩個向量的數(shù)量積概念、性質(zhì)和計算方法及運算規(guī)律.掌握兩個向量的數(shù)量積的主要用途,會用它解決立體幾何中一些簡單的問題.空間向量的數(shù)量積運算【課標(biāo)要求】【核心掃描】空間向量的數(shù)量積運算.(重點)利用空間向量的數(shù)量積求夾角及距離.(
2025-06-12 19:01
【總結(jié)】空間向量運算的坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,),(,)abab
2025-06-16 04:35
【總結(jié)】山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)主講人:蘇本堂一、空間曲線的切線與法平面二、曲面的切平面和法線第六節(jié)多元函數(shù)微分學(xué)的幾何應(yīng)用山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)
2025-05-12 12:02
【總結(jié)】復(fù)習(xí):平面曲線的切線與法線切線方程0yy?))((00xxxf???法線方程0yy?)()(100xxxf????已知平面光滑曲線),(00yx在點有5-5空間曲線的切線與弧長?????0),,(0),,(zyxGzyxF空間曲線的一般方程
2025-05-14 00:30
【總結(jié)】第三節(jié)空間曲線空間曲線的密切平面空間曲線的基本三棱形空間曲線的曲率、撓率和伏雷內(nèi)公式空間曲線在一點臨近的結(jié)構(gòu)空間曲線論的基本定理一般螺線空間曲線的密切平面定義:過空間曲線上點的切線和點鄰近一點可作一平面
2024-10-24 14:38
【總結(jié)】空間向量及其運算共線向量定理共面向量定理0//aabbabb???對空間任意兩個向量、(),的充要條件是存在實數(shù),使=.,,,abpabxypxayb如果兩個向量不共線,則向量與向量共面的充要
2024-08-01 08:50
【總結(jié)】§空間向量的夾角和距離公式萊州市第十三中學(xué)孫興文一、向量的直角坐標(biāo)運算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(
2024-08-14 10:21
【總結(jié)】平面直線的方向向量是如何定義的?唯一嗎?如何表示空間直線的方向?空間直線的方向向量和平面的法向量對于空間任意一條直線l,我們把與直線平行的非零向量d叫做直線的一個方向向量。?方向向量空間直線的方向向量是唯一的嗎?一個空間向量能夠表示幾條空間直線的方向向量?例1:如圖所示的空間直角
2024-08-25 01:54
【總結(jié)】利用空間向量解決空間中的“夾角”問題學(xué)習(xí)目標(biāo):、直線與平面所成的角、二面角的向量方法;;。重點:利用空間向量解決空間中的“夾角”難點:向量夾角與空間中的“夾角”的關(guān)系一、復(fù)習(xí)引入1.用空間向量解決立體幾何問題的“三步曲”(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(化為向量問題
2025-06-07 21:15
【總結(jié)】2020年12月16日星期三學(xué)習(xí)目標(biāo)?1.理解空間向量的概念,掌握空間向量的加法運算。?2.用空間向量的運算意義和運算律解決立幾問題。?重點:空間向量的加法、減法運算律。?難點:用向量解決立幾問題.OABC正東正北向上如圖:已知OA=6米,AB=6米,BC=3米,
2024-11-09 08:04