【總結(jié)】第三節(jié)空間曲線空間曲線的密切平面空間曲線的基本三棱形空間曲線的曲率、撓率和伏雷內(nèi)公式空間曲線在一點(diǎn)臨近的結(jié)構(gòu)空間曲線論的基本定理一般螺線空間曲線的密切平面定義:過空間曲線上點(diǎn)的切線和點(diǎn)鄰近一點(diǎn)可作一平面
2024-10-24 14:38
【總結(jié)】空間向量及其運(yùn)算共線向量定理共面向量定理0//aabbabb???對空間任意兩個向量、(),的充要條件是存在實數(shù),使=.,,,abpabxypxayb如果兩個向量不共線,則向量與向量共面的充要
2025-07-23 08:50
【總結(jié)】§空間向量的夾角和距離公式萊州市第十三中學(xué)孫興文一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(
2025-08-05 10:21
【總結(jié)】平面直線的方向向量是如何定義的?唯一嗎?如何表示空間直線的方向?空間直線的方向向量和平面的法向量對于空間任意一條直線l,我們把與直線平行的非零向量d叫做直線的一個方向向量。?方向向量空間直線的方向向量是唯一的嗎?一個空間向量能夠表示幾條空間直線的方向向量?例1:如圖所示的空間直角
2025-08-16 01:54
【總結(jié)】利用空間向量解決空間中的“夾角”問題學(xué)習(xí)目標(biāo):、直線與平面所成的角、二面角的向量方法;;。重點(diǎn):利用空間向量解決空間中的“夾角”難點(diǎn):向量夾角與空間中的“夾角”的關(guān)系一、復(fù)習(xí)引入1.用空間向量解決立體幾何問題的“三步曲”(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(化為向量問題
2025-06-07 21:15
【總結(jié)】2020年12月16日星期三學(xué)習(xí)目標(biāo)?1.理解空間向量的概念,掌握空間向量的加法運(yùn)算。?2.用空間向量的運(yùn)算意義和運(yùn)算律解決立幾問題。?重點(diǎn):空間向量的加法、減法運(yùn)算律。?難點(diǎn):用向量解決立幾問題.OABC正東正北向上如圖:已知OA=6米,AB=6米,BC=3米,
2024-11-09 08:04
【總結(jié)】★向量的內(nèi)積的概念★向量的長度★向量的正交性★向量空間的正交規(guī)范基的概念★向量組的正交規(guī)范化★正交陣、正交變換的概念§1.預(yù)備知識:向量的內(nèi)積下頁關(guān)閉n維向量是空間三維向量的推廣,本節(jié)通過定義向量的內(nèi)積,從而引進(jìn)n維向量的度量概念:向量的長度,夾角及正交。定義1
2025-09-19 08:45
【總結(jié)】設(shè)空間曲線的方程????????)()()(tzztyytxxozyx其中的三個函數(shù)均可導(dǎo).M?.),,(0000tttzzyyxxM??????????對應(yīng)于;),,,(0000ttzyxM?對應(yīng)于設(shè)?M?第六節(jié)微分法在幾何上的應(yīng)用一、空
2025-05-12 12:02
【總結(jié)】本課件可以在以下網(wǎng)址看到:1.高等數(shù)學(xué)博客:2.微積分精品課程網(wǎng)站:《高等數(shù)學(xué)學(xué)習(xí)手冊》在以下書店購買:四川大學(xué)江安校區(qū)商業(yè)街紅專書店
2024-12-08 00:43
【總結(jié)】第六節(jié)空間向量知識提要1.空間向量的概念:在空間,我們把具有和的量叫做向量。2.空間向量的運(yùn)算。定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘運(yùn)算如下(如圖)。;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)合律:⑶數(shù)乘分配律:3.共線向量。(1)如果表示空間向量的有向線段所在的直線
2025-07-23 04:56
【總結(jié)】......空間向量專題練習(xí)一、填空題(本大題共4小題,)(1,0,-1),平面β的法向量為(0,-1,1),則平面α與平面β所成二面角的大小為______.【答案】π3或2π3【解析】解:設(shè)平面α的
2025-06-23 03:42
【總結(jié)】《》教案一、教學(xué)目標(biāo):1.知識目標(biāo):了解向量與平面平行的意義,掌握它們的表示方法。理解共線向量定理、共面向量定理和空間向量分解定理,理解空間任一向量可用空間不共面的三個已知向量唯一線性表示,會在簡單問題中選用空間三個不共面向量作為基底表示其他向量。會用空間向量的基本定理解決立體幾何中有關(guān)的簡單問題。2.能力目標(biāo):通過空間向量分解定理的得出過程,體會由特殊到一般,由低維到高維的思想
2025-04-17 07:36
【總結(jié)】空間向量的應(yīng)用----求空間角與距離一、考點(diǎn)梳理,近幾年高考的立體幾何大題,在考查常規(guī)解題方法的同時,更多地關(guān)注向量法(基向量法、坐標(biāo)法)在解題中的應(yīng)用。坐標(biāo)法(法向量的應(yīng)用),以其問題(數(shù)量關(guān)系:空間角、空間距離)處理的簡單化,而成為高考熱點(diǎn)問題。可以預(yù)測到,今后的高考中,還會繼續(xù)體現(xiàn)法向量的應(yīng)用價值。,其常用技巧與方法總結(jié)如下:1)求直線和直線所成的角若直線AB、C
2025-08-05 15:42
【總結(jié)】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【總結(jié)】第四講空間向量一、定義:(1)已知,則(2)已知,則;;(3)數(shù)量積:注:;;(4)應(yīng)用:已知=二、空間向量解決空間立體幾何問題:1、位置關(guān)系判定:(1)線線平行:線線垂直:(2)線面平行:(其中為平面的法向量)線面垂直:(3)面面平行:面面垂直:2、求夾角:(1)線線角:,其中(2)線面角:,其中(3)二
2025-03-25 06:42