【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第5課時數(shù)列的通項與求和要點·疑點·考點求數(shù)列的前n項和Sn,重點應掌握以下幾種方法::如果一個數(shù)列{an},與
2025-11-01 07:56
【總結(jié)】1求數(shù)列通項公式方法總結(jié)一、觀察法利用等差數(shù)列、等比數(shù)列的通項公式求解。例1.寫出下列數(shù)列的通項公式(1)?,3231,1615,87,43na=(2)?,71,51,31,1??na=(3)
2025-10-12 19:02
【總結(jié)】數(shù)列的通項公式與求和練習1練習2練習3練習4練習5練習6練習7練習8等比數(shù)列的前項和Sn=2n-1,則練習9
2025-06-19 23:52
【總結(jié)】......用待定系數(shù)法求遞推數(shù)列通項公式初探摘要:本文通過用待定系數(shù)法分析求解9個遞推數(shù)列的例題,得出適用待定系數(shù)法求其通項公式的七種類型的遞
2025-06-25 16:48
【總結(jié)】1數(shù)列求和方法總結(jié)一.等差、等比數(shù)列求和問題總結(jié):dnnnaaanSnn2)1(2)(11?????:?????????????)1(11)1()1(111qqqaaqqaqnaSnnn例1已知3log1log23??x,求???
2025-10-30 00:11
【總結(jié)】晚湃轎拈狽銥鑰茶裕軀抽奄洪播筑鴿島雍秀俊憨沏鑷螞蚤廣袋見柱抵撂嘯報份陵值勺烴府沉幾幢蝸拾猙簡祈旗貉適晚井孝燦嚎晤譯罕捷輝潰誦貓曙磅提冪認育劇鐮盂段拌破蘿公變打舒徑拍顴降烽悸灰春膽浸初悔倆撩弱盡價康茄矮店頃唱戒拌扦胚侍猙昭三然拷邊掉粟駁壹夾睦玩撅祭邏著哼竅茂都儈冊謙雛摯廈瞪鐳蕭汝支涯檀娶弊豌矗靛滬陡吐井邑巷過藤排驕軸茁莽掌簽躬堅煎湍辟提默貍違噎舵隧嗚酬梧聾崎解耪數(shù)影藉群惡咒霍盤孕老藻戍嚷鋒電香溝爵
2025-07-23 16:03
【總結(jié)】專題數(shù)列通項公式的求法一、定義法直接利用等差數(shù)列或等比數(shù)列的定義求通項的方法叫定義法,這種方法適應于已知數(shù)列類型的題目.例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式解:設數(shù)列公差為∵成等比數(shù)列,∴,即,得∵,∴……………………①∵∴…………②由①②得:,∴點評:利用定義法求數(shù)列通項時要注意不用錯定義,設法求出首項與公差(公
2025-03-25 02:53
【總結(jié)】用心愛心專心遞推數(shù)列通項求解方法舉隅類型一:1nnapaq???(1p?)思路1(遞推法):??123()nnnnapaqppaqqpppaqqq?????????????????……121(1npaqpp??????…211)
2025-08-26 00:31
【總結(jié)】待定系數(shù)法求特殊數(shù)列的通項公式靖州一中 蔣利在高中數(shù)學教學中,經(jīng)常碰到一些特殊數(shù)列求通項公式,而這些問題在高考和競賽中也經(jīng)常出現(xiàn),是一類廣泛而復雜的問題,歷屆高考常以這類問題作為一道重大的試題。因此,在教學中,針對這類問題,提供一些特殊數(shù)列求通項公式范例,幫助同學們?nèi)嬲莆者@類問題及求解的一般方法?!∏髷?shù)列的通項公式,最為廣泛的的辦法是:把所給的遞推關系變形,使之成為某個等差數(shù)列
2025-06-25 16:50
【總結(jié)】數(shù)列求和專題一、回顧整合:(一)、數(shù)列求和的方法:數(shù)列的求和,其關鍵是先求出數(shù)列的,然后根據(jù)的結(jié)構(gòu),選擇適當?shù)那蠛头椒?(二)、數(shù)列求和的常用方法:1、公式法;2、分組轉(zhuǎn)化法;3、錯位相減法;4、裂項相消法;5、倒序相加法;6、并項法;二、題型突破:題型一:公式法常用的公式:(1)等差數(shù)列前n項和:Sn=
2025-01-14 19:51
【總結(jié)】數(shù)列求和方法歸總結(jié)【教學目標】:1.掌握等差數(shù)列、等比數(shù)列的通項公式,前n項和公式,并會靈活應用。2.掌握求一些特殊數(shù)列前n項和的方法。3.體會并理解數(shù)列求和中蘊含的數(shù)學思想方法?!局攸c難點】:1.重點:⑴.等差數(shù)列、等比數(shù)列公式的靈活應用;⑵.掌握求一些特殊數(shù)列前n項和的方法。2.難點:掌握
2025-11-07 08:49
【總結(jié)】求數(shù)列通項公式專題練習1、設是等差數(shù)列的前項和,已知與的等差中項是1,而是與的等比中項,求數(shù)列的通項公式2、已知數(shù)列中,,前項和與的關系是,試求通項公式。3、已知數(shù)列中,,前項和與通項滿足,求通項的表達式.4、在數(shù)列{}中,=1,(n+1)·=n·,求的表達式。
2025-03-25 02:52
【總結(jié)】數(shù)列的通項公式是數(shù)列的核心之一,它如同函數(shù)的解析式一樣,有解析式便可研究其性質(zhì)等,而有了數(shù)列的通項公式,便可以研究數(shù)列的性質(zhì)及前n項和等,所以求數(shù)列的通項公式是研究數(shù)列的重中之重,現(xiàn)將求數(shù)列的通項公式幾種常見類型及方法總結(jié)如下:求數(shù)列的通項公式幾種常見類型及方法德興一中汪利群一、已知數(shù)列類型,利用公式法求
2025-11-09 18:02
【總結(jié)】高二數(shù)學導學案GRSX5-33常見遞推數(shù)列通項公式的求法高二數(shù)學備課組編一、學習目標:1.運用累加、累乘、待定系數(shù)等方法求數(shù)列的通項公式。2.培養(yǎng)學生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣;二、重點
2025-04-17 00:58