【總結(jié)】由遞推公式求通項(xiàng)公式的常用方法由數(shù)列的遞推公式求通項(xiàng)公式是高中數(shù)學(xué)的重點(diǎn)問題,也是難點(diǎn)問題,它是歷年高考命題的熱點(diǎn)題。對(duì)于遞推公式確定的數(shù)列的求解,通??梢酝ㄟ^(guò)遞推公式的變換,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題,有時(shí)也用到一些特殊的轉(zhuǎn)化方法與特殊數(shù)列。方法一:累加法形如an+1-an=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,則用累加法求an。有時(shí)若不能直
2025-06-18 13:57
【總結(jié)】轉(zhuǎn)化法巧用換元法引入其他方法競(jìng)賽輔導(dǎo)-數(shù)列(二)由數(shù)列的遞推公式求通項(xiàng)公式遞推數(shù)列有關(guān)概念:①遞推公式:一個(gè)數(shù)列{}na中的第n項(xiàng)na與它前面若干項(xiàng)1na?,2na?,…,nka?(kn?)的關(guān)系式稱為遞推公式.②遞推數(shù)列:由遞推公式和
2024-08-14 19:41
【總結(jié)】......數(shù)列通項(xiàng)公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會(huì)出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項(xiàng)公式的求法是??嫉囊粋€(gè)知識(shí)點(diǎn),一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項(xiàng)公式的
2025-06-26 05:23
【總結(jié)】數(shù)列通項(xiàng)公式的求法集錦非等比、等差數(shù)列的通項(xiàng)公式的求法,題型繁雜,方法瑣碎結(jié)合近幾年的高考情況,對(duì)數(shù)列求通項(xiàng)公式的方法給以歸納總結(jié)。一、累加法形如(n=2、3、4…...)且可求,則用累加法求。有時(shí)若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式。解:∵這n-1個(gè)等式累加得:=
2025-06-26 05:28
【總結(jié)】課時(shí)作業(yè)5 數(shù)列的遞推公式(選學(xué))時(shí)間:45分鐘 滿分:100分課堂訓(xùn)練1.在數(shù)列{an}中,a1=,an=(-1)n·2an-1(n≥2),則a5=( )A.- B.C.- D.【答案】 B【解析】 由an=(-1)n·2an-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=.2.某數(shù)列第一項(xiàng)為1,
2025-03-25 02:52
【總結(jié)】高考數(shù)列通項(xiàng)公式研究畢業(yè)論文目錄引言…………………………………………………………………………11求通項(xiàng)公式的方法……………………………………………………………12求通項(xiàng)公式方法選擇策略…………………………………………………123求通項(xiàng)公式注意的問題………………………………………………………13參考文獻(xiàn)…………………………………………………………………
2025-04-17 13:06
【總結(jié)】方法,并能根據(jù)遞推公式求出滿足條件的項(xiàng).法.1,2,2,3,3,3,4,4,4,4,5100A.14B.12C.131.(D2010.
2025-01-18 16:24
【總結(jié)】求數(shù)列通項(xiàng)公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項(xiàng)公式。解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式,得,所以數(shù)列的通項(xiàng)公式為。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說(shuō)明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項(xiàng)公式求出,進(jìn)而求出數(shù)列的通項(xiàng)公式。二、累加法例2已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:由得則
2024-09-01 06:16
【總結(jié)】第一篇:常用語(yǔ)句錯(cuò)字舉隅 常用語(yǔ)句錯(cuò)字舉隅 飛揚(yáng)跋(拔)扈 班(搬)門弄斧 可見一斑(般) 自暴(曝)自棄 英雄輩(倍)出 并行不悖(背) 民生凋敝(蔽) 遮天蔽(避)日 大有裨(...
2024-11-09 04:31
【總結(jié)】第一篇:古代送別詩(shī)鑒賞舉隅 古代送別詩(shī)鑒賞舉隅 淮安市范集中學(xué)趙秀麗郵編223215電話:***內(nèi)容摘要:送別是中國(guó)古代詩(shī)詞常見主題之一,此類詩(shī)詞通過(guò)一些常見意象,描畫出了人們?cè)诂F(xiàn)實(shí)生活中種種離情...
2024-11-09 02:13
【總結(jié)】通項(xiàng)公式和前n項(xiàng)和1、新課講授:求數(shù)列前N項(xiàng)和的方法1.公式法(1)等差數(shù)列前n項(xiàng)和:特別的,當(dāng)前n項(xiàng)的個(gè)數(shù)為奇數(shù)時(shí),,即前n項(xiàng)和為中間項(xiàng)乘以項(xiàng)數(shù)。這個(gè)公式在很多時(shí)候可以簡(jiǎn)化運(yùn)算。(2)等比數(shù)列前n項(xiàng)和:q=1時(shí),,特別要注意對(duì)公比的討論。(3)其他公式較常見公式:1、2、3、[例1
2025-03-25 02:53
【總結(jié)】“數(shù)列通項(xiàng)公式及數(shù)列求和”課例一、設(shè)計(jì)理念首先通過(guò)解剖導(dǎo)學(xué)案,讓學(xué)生經(jīng)歷知識(shí)網(wǎng)絡(luò)的自主構(gòu)建,然后在匯報(bào)和例題解法展示活動(dòng)中進(jìn)行知識(shí)網(wǎng)絡(luò)的完善和思想、方法的總結(jié)提升,以導(dǎo)學(xué)案為載體、立足過(guò)程、增強(qiáng)解決數(shù)列綜合題的能力。二、教材分析㈠教材的地位和作用數(shù)列是高中數(shù)學(xué)的一個(gè)重要組成部分,數(shù)列是函數(shù)概念的繼續(xù)和延伸,幾乎每年高考試卷中都會(huì)出現(xiàn)一道數(shù)列綜合題,且這一部分內(nèi)容與函數(shù)、幾何
2025-04-17 01:43
【總結(jié)】1、國(guó)家教育部考試中心張偉明先生談“詩(shī)歌鑒賞”命題變化采用主觀題的方式,選擇古代詩(shī)歌作為考察內(nèi)容。古代詩(shī)歌的考查主要包括對(duì)作品的形象、語(yǔ)言和表達(dá)技巧進(jìn)行初步的鑒賞,對(duì)作品的思想內(nèi)容進(jìn)行評(píng)價(jià)。所謂初步鑒賞指的是對(duì)作品的形象、語(yǔ)言和表達(dá)技巧作概要的賞析,無(wú)需引經(jīng)據(jù)典,也不需要拿試卷以外的作品進(jìn)行比較,只需對(duì)作品本身的特點(diǎn)進(jìn)行鑒賞。當(dāng)然,如
2024-08-13 10:43
【總結(jié)】求數(shù)列通項(xiàng)公式專題練習(xí)1、設(shè)是等差數(shù)列的前項(xiàng)和,已知與的等差中項(xiàng)是1,而是與的等比中項(xiàng),求數(shù)列的通項(xiàng)公式2、已知數(shù)列中,,前項(xiàng)和與的關(guān)系是,試求通項(xiàng)公式。3、已知數(shù)列中,,前項(xiàng)和與通項(xiàng)滿足,求通項(xiàng)的表達(dá)式.4、在數(shù)列{}中,=1,(n+1)·=n·,求的表達(dá)式。