【總結(jié)】等比數(shù)列的前n項(xiàng)和第1課時(shí)一、新課導(dǎo)入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和n112111??????nnqaqaqaaS
2025-08-16 01:37
【總結(jié)】等比數(shù)列的前n項(xiàng)和一、等比數(shù)列的前n項(xiàng)和公式1.乘法運(yùn)算公式法∵Sn=a1+a2+a3+…+an=a1+a1q+a1q2+…+a1qn-1=a1(1+q+q2+…+qn-1)=a1·=,∴Sn=.2.方程法∵Sn=a1+a1q+a1q2+…+a1qn-1=a1+q(a1+a1q+…+a1qn-2)=a1+q(a1+a1q+…+a1qn-1-
2025-06-29 16:17
【總結(jié)】等比數(shù)列的前n項(xiàng)和第1課時(shí)一、新課導(dǎo)入:即,①,②②-①得即.由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和,如何化簡(jiǎn)?求數(shù)列:二.新課講解:Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1qSn=a1q+a1q
2024-10-16 20:25
【總結(jié)】等差數(shù)列的前n項(xiàng)和復(fù)習(xí)數(shù)列的有關(guān)概念1…,按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,第2項(xiàng)用表示,第n項(xiàng)用表示,…,數(shù)列的一般形式可以寫成:
2024-11-09 12:24
【總結(jié)】求通項(xiàng)公式專題一、利用與關(guān)系求1-1已知數(shù)列的前項(xiàng)和,求通項(xiàng)公式例1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)變式訓(xùn)練1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)1-2已知與的關(guān)系式,求例2 已知數(shù)列的前項(xiàng)和,求的通項(xiàng)公式..變式訓(xùn)練2已知數(shù)列的前項(xiàng)和滿足,求的通項(xiàng)公式..變式訓(xùn)練3
2025-03-25 02:53
【總結(jié)】數(shù)列通項(xiàng)的求法一、公式法二、迭加法若an+1=an+f(n),則:若an+1=f(n)an,則:三、疊乘法an=S1(n=1),Sn-Sn-1(n≥2).an=a1+?(ak-ak-1)=a1+?f(k-1)=a1+?f(k).n-1k=1
2024-11-11 08:49
【總結(jié)】數(shù)列通項(xiàng)的求法高三備課組求數(shù)列的通項(xiàng)方法1、由等差,等比定義,寫出通項(xiàng)公式2、利用迭加an-an-1=f(n)、迭乘an/an-1=f(n)、迭代3、一階遞推,我們通常將其化為
2024-11-09 08:47
【總結(jié)】第六章數(shù)列二等差數(shù)列第1課時(shí)課題:(1)教學(xué)目標(biāo)1、知識(shí)點(diǎn):了解等差數(shù)列前項(xiàng)和的定義,了解倒序相加的原理,理解等差數(shù)列前項(xiàng)和公式推導(dǎo)的過程,掌握等差數(shù)列前項(xiàng)和的公式,記憶公式的兩種形式,并能運(yùn)用公式解決簡(jiǎn)單的問題.;2、能力訓(xùn)練目標(biāo):(1)通過公式的推導(dǎo)和公式的運(yùn)用,使學(xué)生體會(huì)從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認(rèn)識(shí)問題,解決問題的一般
2025-04-17 08:31
【總結(jié)】課時(shí)序號(hào):36重點(diǎn):1、理解數(shù)列通項(xiàng)公式的意義,掌握等差、等比數(shù)列的通項(xiàng)公式的求法;2、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.3、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、輔助數(shù)列法等等難點(diǎn):1、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.2、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、迭代
2025-04-30 18:12
【總結(jié)】課時(shí)教學(xué)設(shè)計(jì)首頁授課教師:授課時(shí)間:10年9月8日課題課型新授課第幾課時(shí)1課時(shí)教學(xué)目標(biāo)(三維)1..理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法,體會(huì)轉(zhuǎn)化的思想;項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問題,用方程的思想認(rèn)識(shí)等比數(shù)列前項(xiàng)和公式,利用公式知三求
2025-08-18 16:48
【總結(jié)】《等差數(shù)列前n項(xiàng)和》教案(高一年級(jí)第一冊(cè)·第三章第三節(jié))一、教材分析●教學(xué)內(nèi)容《等差
2025-04-17 07:45
【總結(jié)】1、等差數(shù)列{an}前n項(xiàng)和公式:===。等差數(shù)列的前n項(xiàng)之和公式可變形為,若令A(yù)=,B=a1-,則=An2+Bn.在解決等差數(shù)列問題時(shí),如已知,a1,an,d,,n中任意三個(gè),可求其余兩個(gè)。2、等差數(shù)列{an}前n項(xiàng)和的性質(zhì)性質(zhì)1:Sn,S2n-Sn,S3n-S2n,…也在等差數(shù)列,公差為n2d性質(zhì)2:(1)若項(xiàng)數(shù)為偶數(shù)2n,則S2n=n(a1+a2n)=n(an
2025-04-17 07:58
【總結(jié)】 優(yōu)勝教育高二數(shù)學(xué)必修五數(shù)列 張敬敬一對(duì)一個(gè)性化輔導(dǎo)第1講 等差數(shù)列及其前n項(xiàng)和一、填空題1.在等差數(shù)列{an}中,a3+a7=37,則a2+a4+a6+a8=________.[來源2.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-=1,則公差為________.3.在等差數(shù)列{an}中,a1>0,S4=S9,則Sn取最大值時(shí),n=________.4.
2025-03-25 06:56
【總結(jié)】等差數(shù)列前n項(xiàng)和公式復(fù)習(xí)回顧(1)等差數(shù)列的通項(xiàng)公式:已知首項(xiàng)a1和公差d,則有:an=a1+(n-1)d已知第m項(xiàng)am和公差d,則有:an=am+(n-m)d,d=(an-am)/(n-m)
2025-08-15 20:34
【總結(jié)】等差數(shù)列的前n項(xiàng)和數(shù)列{an}是等差數(shù)列的條件an-an-1=d等差數(shù)列{an}的通項(xiàng)公式an=a1+(n-1)d等差數(shù)列{an}的性質(zhì)m+n=p+qam+an=ap+aq一、數(shù)列前n項(xiàng)和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a(bǔ)1+
2024-10-09 17:27