【總結(jié)】專題:數(shù)列的通項求通項的常見問題:1、特殊數(shù)列的通項2、構(gòu)造特殊數(shù)列,間接求通項3、由Sn求an4、由遞推關(guān)系求an已知數(shù)列{an}中,a1=2。(1)求證:數(shù)列是等差數(shù)列。(2)求數(shù)列{an}的通項公式?!夯仡櫋?/span>
2024-11-09 13:17
【總結(jié)】....求數(shù)列通項公式的常用幾種方法數(shù)列知識是高考中的重要考察內(nèi)容,而數(shù)列的通項公式又是數(shù)列的核心內(nèi)容之一,它如同函數(shù)中的解析式一樣,有了解析式便可研究起性質(zhì)等;,求數(shù)列的通項公式往往是解題的突破口,,:1、類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例:已知數(shù)列滿足,
2025-04-09 01:51
【總結(jié)】數(shù)列求和、數(shù)列的綜合應(yīng)用練習(xí)題1.數(shù)列共十項,且其和為240,則的值為()2.已知正數(shù)等差數(shù)列的前20項的和為100,那么的最大值是()
2025-03-25 02:51
【總結(jié)】:——直接利用等差或等比數(shù)列的定義求通項。特征:適應(yīng)于已知數(shù)列類型(等差或者等比).例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式.變式練習(xí):,求的通項公式2.在等比數(shù)列中,,且為和的等差中項,求數(shù)列的首項、公比及前項和.求數(shù)列的通項可用公式求解。特征:
2025-06-17 07:01
【總結(jié)】數(shù)列通項公式的十種求法一、公式法二、累加法例1已知數(shù)列滿足,求數(shù)列的通項公式。例2已知數(shù)列滿足,求數(shù)列的通項公式。()三、累乘法例3已知數(shù)列滿足,求數(shù)列的通項公式。()評注:本題解題的關(guān)鍵是把遞推關(guān)系轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項公式。例4已知數(shù)列滿足,求的通項公式。()評
2025-06-26 05:34
【總結(jié)】海豚教育個性化簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會通過作差法
2025-08-04 10:15
【總結(jié)】......數(shù)列的通項公式教學(xué)目標(biāo):使學(xué)生掌握求數(shù)列通項公式的常用方法.教學(xué)重點:運用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式.教學(xué)難點:構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式的方法.教學(xué)時數(shù):2課
2025-04-17 04:59
【總結(jié)】課題:數(shù)列求和考綱要求:掌握等差、等比數(shù)列的求和公式及其應(yīng)用;掌握常見的數(shù)列求和方法(公式法、倒序相加、錯位相減,分組求和、拆項、裂項求和等求和方法).教材復(fù)習(xí)基本公式法:等差數(shù)列求和公式:等比數(shù)列求和公式: ;;.錯位相消法:給各邊同乘以一個適當(dāng)?shù)臄?shù)或式,然后把所得的等式和原等式相減,對應(yīng)項相互抵消,最后得出前項和.一般適應(yīng)于數(shù)列的前向求和,其中成等差
2025-04-17 01:43
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點·疑點·考點(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2025-08-05 21:12
【總結(jié)】?要點183。疑點183??键c?課前熱身?能力183。思維183。方法?延伸183。拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點183。疑點183??键c(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S(k-1)n…成等差(
2025-07-25 15:40
【總結(jié)】2.(教材改編)數(shù)列{an}的前n項和為Sn,若an=,則S5等于( )A.1 B.C. D.B [∵an==-,∴S5=a1+a2+…+a5=1-+-+…-=.]3.(2016·廣東中山華僑中學(xué)3月模擬)已知等比數(shù)列{an}中,a2·a8=4a5,等差數(shù)列{bn}中,b4+b6=a5,則數(shù)列{bn}的前9項和S9等于( )A.
2025-06-25 02:13
【總結(jié)】第一篇:數(shù)列求和練習(xí)題 數(shù)列求和練習(xí)題 一、利用常用求和公式求和 、等差數(shù)列求和公式:Sn=n(a1+an)n(n-1)=na1+d22 (q=1)ìna1?n2、等比數(shù)列求和公式:Sn=ía...
2024-10-12 08:20
【總結(jié)】2018屆高三第一輪復(fù)習(xí)【20】——數(shù)列求和與求通項一、知識梳理:1.幾種數(shù)列的思想方法:(1)數(shù)列通項公式的常見求法(2)數(shù)列前項和的常見求法2.方法歸納:(1)求通項:1、迭代法:;2、構(gòu)造法:;3、取倒數(shù):;4、取對數(shù):;5、公式法:;6、特征根法:,;7、待定系數(shù)法:;(2)求和:1、錯位相減法:等比數(shù)列求和公式的由
2025-04-17 12:37
【總結(jié)】......數(shù)列通項公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項公式的求法是常考的一個知識點,一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項公式的
2025-06-26 05:23
【總結(jié)】等比、差數(shù)列前n項和的性質(zhì){an}為等比數(shù)列,Sn為其前n項和,則SK,S2K-SK,S3K-S2K,···仍構(gòu)成等比數(shù)列,且有(S2K-SK)2=SK·(S3K-S2K)例{an}中,S10=10,S20=30,求S30.例{an}中,S10=10,S20=30,求S30.{an}為等差
2025-04-30 18:12