【總結(jié)】義龍一中2015-2016學(xué)年度期末圓錐曲線復(fù)習(xí)卷學(xué)校:___________姓名:___________班級:___________考號:___________一、選擇題(每小題5分,一共60分)1.已知橢圓的一個焦點為F(0,1),離心率,則該橢圓的標準方程為()A.B.C.D.2.已知橢圓的長軸在軸上,且焦距為4
2025-08-05 04:46
【總結(jié)】星動力教育內(nèi)部資料星動力教育上課資料出題人:江師我不是想要,是一定要!沒有傘的孩子,必須努力奔跑!別在最該奮斗的年紀,選擇了安逸??!橢圓歷年高考考點梳理1、橢圓的概念2、橢圓的標準方程及其幾何性質(zhì)核心考點一 橢圓的定義及標準方程1、橢圓的焦距是2,則m的值是()A.5
2025-03-25 00:03
【總結(jié)】WORD資料可編輯圓錐曲線光學(xué)性質(zhì)的證明及應(yīng)用初探一、圓錐曲線的光學(xué)性質(zhì)1.1 橢圓的光學(xué)性質(zhì):從橢圓一個焦點發(fā)出的光,經(jīng)過橢圓反射后,反射光線都匯聚到橢圓的另一個焦點上;()橢圓的這種光學(xué)特性,常被用來設(shè)計一些照明設(shè)備或聚熱裝置.例如在處放置一個熱源,那
2025-06-22 16:01
【總結(jié)】.圓錐曲線大題題型歸納基本方法:1.待定系數(shù)法:求所設(shè)直線方程中的系數(shù),求標準方程中的待定系數(shù)、、、、等等;2.齊次方程法:解決求離心率、漸近線、夾角等與比值有關(guān)的問題;3.韋達定理法:直線與曲線方程聯(lián)立,交點坐標設(shè)而不求,用韋達定理寫出轉(zhuǎn)化完成。要注意:如果方程的根很容易求出,就不必用韋達定理,而直接計算出兩個根;4.點差法:弦中點問題,端點坐標設(shè)而不求。也叫五
2025-07-25 00:14
【總結(jié)】圓錐曲線大題題型歸納基本方法:1.待定系數(shù)法:求所設(shè)直線方程中的系數(shù),求標準方程中的待定系數(shù)、、、、等等;2.齊次方程法:解決求離心率、漸近線、夾角等與比值有關(guān)的問題;3.韋達定理法:直線與曲線方程聯(lián)立,交點坐標設(shè)而不求,用韋達定理寫出轉(zhuǎn)化完成。要注意:如果方程的根很容易求出,就不必用韋達定理,而直接計算出兩個根;4.點差法:弦中點問題,端點坐標設(shè)而不求。也叫五條
【總結(jié)】......圓錐曲線練習(xí)題(文)第I卷(選擇題)一、選擇題1.雙曲線的漸近線方程是A.B.C.D.2.已知P是以F1、F2為焦點的雙曲線上一點,若,則三角形的面積為()
2025-03-25 00:04
【總結(jié)】圓錐曲線過定點問題一、小題自測1.無論取任何實數(shù),直線必經(jīng)過一個定點,則這個定點的坐標為.2.已知直線;圓,則直線與圓的位置關(guān)系為.二、幾個常見結(jié)論:滿足一定條件的曲線上兩點連結(jié)所得的直線過定點或滿足一定條件的曲線過定點,這構(gòu)成了過定點問題。1、過定點模型:是圓錐曲線上的兩動點,是一定點,其
【總結(jié)】數(shù)學(xué)壓軸題圓錐曲線類一1.如圖,已知雙曲線C:的右準線與一條漸近線交于點M,F(xiàn)是雙曲線C的右焦點,O為坐標原點.(I)求證:;(II)若且雙曲線C的離心率,求雙曲線C的方程;(III)在(II)的條件下,直線過點A(0,1)與雙曲線C右支交于不同的兩點P、Q且P在A、Q之間,滿足,試判斷的范圍,并用代數(shù)方法給出證明.2.已知函數(shù),數(shù)列滿足
2025-08-05 18:42
【總結(jié)】習(xí)題精選精講圓錐曲線:(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當常數(shù)等于時,軌跡是線段FF,當常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩條射線,若﹥|FF|,則軌跡不存在。若去
2025-08-05 03:29
【總結(jié)】圓錐曲線知識點小結(jié):橢圓:平面內(nèi)與兩個定點的距離之和等于定長(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距。數(shù)學(xué)語言:常數(shù)2a=,軌跡是線段;常數(shù)2a,軌跡不存在;雙曲線:平面內(nèi)與兩個F1,F(xiàn)2的距離之差的絕對值等于常數(shù)(小于||F1F2)的點的軌跡叫做雙曲線。這兩個定點叫做雙曲線的焦點,兩焦點的距離叫做雙曲線的焦距。數(shù)學(xué)語言
2025-08-10 15:54
【總結(jié)】1 橢 圓典例精析題型一 求橢圓的標準方程【例1】已知點P在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P作長軸的垂線恰好過橢圓的一個焦點,求橢圓的方程.253【解析】故所求方程為+=1或+=1.x253y2103x210y25【點撥】(1)在求橢圓的標準方程
2025-04-17 12:54
【總結(jié)】圓錐曲線直線與圓一、考點內(nèi)容1、求直線斜率方法(1)知直線傾斜角,則斜率即傾斜角為的直線沒有斜率(2)知直線過兩點,,則斜率(3)知直線一般式方程,則斜率知直線斜截式方程,可以直接寫出斜率2、求直線方程方法——點斜式知直線過點,斜率為,則直線方程為__________________,化簡即可!特別在求曲線在點處切線方程,往往用點斜式!4、平行與垂
2025-06-22 23:13
【總結(jié)】范文范例參考攻克圓錐曲線解答題的策略1.直線方程的形式(1)直線方程的形式有五件:點斜式、兩點式、斜截式、截距式、一般式。(2)與直線相關(guān)的重要內(nèi)容①傾斜角與斜率②點到直線的距離③夾角公式:(3)弦長公式直線上兩點間的距離:或(4)兩條直線的位置關(guān)系①=-1②2、圓錐曲線方程及性質(zhì)(1)、橢圓的方程的形式有
【總結(jié)】......圓錐曲線提高題1.設(shè)拋物線的焦點為,,則到該拋物線準線的距離為_____________。解析:利用拋物線的定義結(jié)合題設(shè)條件可得出p的值為,B點坐標為()所以點B到拋物線準線的距離為,本題主要考察拋物線的定義
【總結(jié)】圓錐曲線選擇題1.過雙曲線的右頂點作斜率為-1的直線,該直線與雙曲線的兩條漸近線的交點分別為,若,則此雙曲線的離心率是()A.B.C.2D.2.已知是拋物線上一動點,則點到直線和軸的距離之和的最小值是()A.B.C.D.23.已知點是雙曲線的左焦點,點是該雙曲線的右頂點,過且垂直于軸的直線與雙
2025-08-05 04:26