【總結(jié)】排列(3)---排列的靈活應(yīng)用2020年12月16日星期三回一復(fù)習(xí)回顧:(1)特殊元素分析法;(2)特殊位置分析法;(3)間接法(總體中去掉不符合條件的)。已學(xué)方法:例如:高二(9)班生活委員安排學(xué)號為1至6號的6位同學(xué)在星期一至星期六值日,每人
2024-11-09 05:06
【總結(jié)】數(shù)學(xué)廣角之排列組合主講田村中心小學(xué)劉勝門票5元可以怎樣付錢?門票5元門票5元門票5元門票5元門票5元有幾種穿法?1234每兩個人進(jìn)行一場比賽,一共要比幾場?買一個拼音本,可以怎樣付錢?
2024-12-13 17:38
【總結(jié)】排列組合中的分組分配問題1.(平均分組公式)一般地平均分成n堆(組),必須除以n!,如若部分平均分成m堆(組),必須再除以m!,即平均分組問題,一般地來說,km個不同的元素分成k組,每組m個,則不同的分法有故平均分配要除以分組數(shù)的全排列.kkmm
2024-07-30 23:36
【總結(jié)】組合應(yīng)用問題例1:在100件產(chǎn)品中,有98件合格品,2件次品.從這100件產(chǎn)品中任意抽出3件.⑴一共有多少種不同的抽法?⑵抽出的3件中恰好有1件是次品的抽法有多少種?⑶抽出的3件中至少有1件是次品的抽法有多少種?例2.從5名同學(xué)中選3人參加代
2024-11-12 14:40
【總結(jié)】.公式P是指排列,從N個元素取R個進(jìn)行排列。公式C是指組合,從N個元素取R個,不進(jìn)行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2024-08-04 05:35
【總結(jié)】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2024-08-24 23:43
【總結(jié)】排列組合復(fù)習(xí)二、重點難點三、綜合練習(xí)四、復(fù)習(xí)建議一、知識結(jié)構(gòu)基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題一、知識結(jié)構(gòu)二、重點難點1.兩個基本原理
2024-11-18 00:34
【總結(jié)】一,映射與排列組合問題變式:同(2)257對集合A中元素進(jìn)行分類。二,排列組合中的映射思維通過集合A與另一個集合B之間的映射關(guān)系,將對集合A中元素的計數(shù)問題轉(zhuǎn)化為對集合B的計數(shù)。且A與B是一一對應(yīng)關(guān)系。三,構(gòu)造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2024-11-10 03:08
【總結(jié)】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當(dāng)作一個大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元素的空位和兩端.,如果甲乙兩個必須不相鄰,那么不同的排法種
2025-03-25 02:37
【總結(jié)】高考數(shù)學(xué)中涂色問題的常見解法及策略與涂色問題有關(guān)的試題新穎有趣,近年已經(jīng)在高考題中出現(xiàn),其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強(qiáng)且靈活多變,因而這類問題有利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1。用5種不同的顏色給圖中
【總結(jié)】二十種排列組合問題的解法排列組合問題聯(lián)系實際生動有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認(rèn)真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉硖幚恚虒W(xué)目標(biāo).;能運用解題策略解決簡單的綜合應(yīng)用題.提高學(xué)生解決問題分析問題的能力.復(fù)習(xí)鞏固(加法原理)完成一件事,有類辦法,在第1類辦法中
【總結(jié)】排列組合復(fù)習(xí)計數(shù)的基本原理排列組合排列數(shù)Anm公式組合數(shù)Cnm公式組合數(shù)的兩個性質(zhì)應(yīng)用本章知識結(jié)構(gòu)分類計數(shù)原理完成一件事,有n類辦法,在第1類辦法中,有m1種不同的方法,在第2類辦法中,有m2種不同的方法……在第n類辦法中,
2024-11-11 05:50
【總結(jié)】組合(2)2022/8/302④要明確堆的順序時,必須先分堆后再把堆數(shù)當(dāng)作元素個數(shù)作全排列.②若干個不同的元素局部“等分”有m個均等堆,要將選取出每一個堆的組合數(shù)的乘積除以m!①若干個不同的元素“等分”為m個堆,要將選取出每一個堆的組合數(shù)的乘積除以m!③非均分堆問題,只要按比例取出分完再用乘法原理作積
2024-08-14 16:59
【總結(jié)】§排列、組合及其應(yīng)用要點梳理(1)排列的定義:從n個的元素中取出m(m≤n)個元素,按照一定的排成一列,叫做從n個不同的元素中取出m個元素的一個排列.(2)排列數(shù)的定義:從n個不同的元素中取出m(m≤n)個元素的的個數(shù)叫做從
2024-08-14 19:06
【總結(jié)】例解排列組合中涂色問題于涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強(qiáng)且靈活多變,故這類問題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①、②、③、④
2025-03-25 02:36