【總結(jié)】1本科生畢業(yè)論文題目不等式證明的若干種方法院系數(shù)學(xué)系專業(yè)數(shù)學(xué)與應(yīng)用數(shù)學(xué)2020年5月2本科生畢業(yè)設(shè)計(jì)(論文、創(chuàng)作)聲
2024-08-27 17:15
2024-08-29 18:40
【總結(jié)】河北師范大學(xué)本科生畢業(yè)論文本科生畢業(yè)論文(設(shè)計(jì))冊(cè)學(xué) 院:數(shù)學(xué)與信息科學(xué)學(xué)院專 業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)班 級(jí):2010級(jí)B班學(xué) 生:指導(dǎo)教師:河北師范大學(xué)本科畢業(yè)論文(設(shè)計(jì))任務(wù)書論文(設(shè)計(jì))題目:關(guān)于不等式證明方法的探討學(xué)院:數(shù)學(xué)與信息科學(xué)學(xué)院專業(yè):數(shù)學(xué)與應(yīng)用
2025-06-18 20:22
【總結(jié)】本科畢業(yè)設(shè)計(jì)(論文)(20xx屆)題目:不等式的證明及其運(yùn)用專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)班級(jí):09數(shù)學(xué)與應(yīng)用數(shù)學(xué)姓名:王乃澤學(xué)
2025-07-10 15:39
【總結(jié)】i摘要在初等數(shù)學(xué)中,證明不等式的常用方法有比較法、綜合法、分析法、反證法、放縮法、判別式法、換元法、數(shù)學(xué)歸納法等等,但是所用的都是初等數(shù)學(xué)知識(shí)。本文利用高等數(shù)學(xué)中的有關(guān)知識(shí),給出幾種不等式的證明方法:?jiǎn)握{(diào)性,輔助函數(shù),凹凸性,中值定理,最值、極值定理,泰勒公式,定積分性質(zhì),柯西施瓦茨。關(guān)鍵詞不等式
2025-01-13 10:10
【總結(jié)】本科生畢業(yè)論文 題 目 不等式證明的若干種方法院 系 數(shù)學(xué)系 專 業(yè) 數(shù)學(xué)與應(yīng)用數(shù)學(xué) 2013年5月本科生畢業(yè)設(shè)計(jì)(論文、創(chuàng)作)聲明本人鄭重聲明:所呈交的畢業(yè)設(shè)計(jì),是本人在指導(dǎo)教師指導(dǎo)下,進(jìn)行研究工作所取得的成
2025-06-28 09:31
【總結(jié)】柯西不等式的證明及相關(guān)應(yīng)用摘要:柯西不等式是高中數(shù)學(xué)新課程的一個(gè)新增內(nèi)容,也是高中數(shù)學(xué)的一個(gè)重要知識(shí)點(diǎn),它不僅歷史悠久,形式優(yōu)美,結(jié)構(gòu)巧妙,也是證明命題、研究最值問(wèn)題的一個(gè)強(qiáng)有力的工具。關(guān)鍵詞:柯西不等式柯西不等式變形式最值一、柯西(Cauchy)不等式:等號(hào)當(dāng)且僅當(dāng)或時(shí)成立(k為常數(shù),)現(xiàn)將它的證明介紹如下:方法1
2025-04-09 01:52
【總結(jié)】第三講柯西不等式與排序不等式一二維形式的柯西不等式若a,b,c,d都是實(shí)數(shù),則(a2+b2)(c2+d2)≥(ac+bd)2當(dāng)且僅當(dāng)ad=bc時(shí),等號(hào)成立.定理1(二維形式的柯西不等式):你能證明嗎?推論22222222||abcdacbdabc
2024-08-01 10:08
【總結(jié)】歸納柯西不等式的典型應(yīng)用【摘要】:柯西不等式是一個(gè)非常重要的不等式,本文用五種不同的方法證明了柯西不等式,介紹了如何利用柯西不等式技巧性解題,在證明不等式或等式,解方程,解三角形相關(guān)問(wèn)題,求函數(shù)最值等問(wèn)題的應(yīng)用方面給出幾個(gè)典型例子。最后用其證明了點(diǎn)到直線的距離公式,更好的解釋了柯西不等式。【關(guān)鍵詞】:柯西不等式;證明;應(yīng)用【引言】:本人通過(guò)老師在中教法課上學(xué)習(xí)柯
2025-06-25 17:25
【總結(jié)】課時(shí)作業(yè)76 柯西不等式與排序不等式、數(shù)學(xué)歸納法證明不等式時(shí)間:45分鐘 分值:100分一、填空題(每小題5分,共45分)1.已知實(shí)數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為________.解析:由(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=1可得,x2+y2+z2≥.答案:2.(2010·廣東東莞)若x+2
2024-08-27 17:02
【總結(jié)】柯西不等式的初等證明及變形作者:張黎娜在客觀事物中,不等量關(guān)系是普遍的,等量關(guān)系是相對(duì)的,不等式更一般地反映了數(shù)量之間的關(guān)系和規(guī)律,,不等式在中學(xué)數(shù)學(xué)中具有重要地位和廣泛應(yīng)用,,不等式相關(guān)問(wèn)題也就成了歷年高考數(shù)學(xué)的考查重點(diǎn),突出考查學(xué)生聯(lián)系與轉(zhuǎn)化,分類討論,數(shù)形結(jié)合等重要的數(shù)學(xué)思想方法和邏輯思維,數(shù)學(xué)應(yīng)用等
2024-09-01 05:32
【總結(jié)】寧波大學(xué)理學(xué)院本科畢業(yè)設(shè)計(jì)(論文)I編號(hào):本科畢業(yè)設(shè)計(jì)(論文)題目:構(gòu)造法證明不等式
2025-07-07 18:21
【總結(jié)】寧波大學(xué)理學(xué)院本科畢業(yè)設(shè)計(jì)(論文)編號(hào): 本科畢業(yè)設(shè)計(jì)(論文)題目:構(gòu)造法證明不等式Constructing
2025-06-28 00:56
【總結(jié)】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號(hào),假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號(hào)成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-04 05:05
【總結(jié)】基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,b0a=b三、常用的幾個(gè)重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-16 22:38