【總結】不等式的性質(zhì)不等式不等式的證明不等式的解法應用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【總結】整合提升知識網(wǎng)絡典例精講數(shù)學歸納法是專門證明與自然數(shù)集有關的命題的一種方法.它可用來證明與自然數(shù)有關的代數(shù)恒等式、三角恒等式、不等式、整除性問題及幾何問題.在高考中,用數(shù)學歸納法證明與數(shù)列、函數(shù)有關的不等式是熱點問題,特別是數(shù)列中的歸納—猜想—證明是對觀察、分析、歸納、論證能力有一定要求的,這也是它成為高考熱點的主要原因.【
2024-11-19 22:43
【總結】三個正數(shù)的算術3幾何平均不等式?,,?,有怎樣的不等式成立會個正數(shù)對于例如式能否推廣呢這個不等關系算數(shù)平均與幾何平均的的數(shù)給出了兩個正基本不等式思考3.,,,,,:,,,,,等號成立時當且僅當那么如果可能有個正數(shù)對于們猜想我式形的等式不本基比類cbaabccbaRcbacba???????
2024-11-18 12:12
【總結】2021/1/61高中數(shù)學復習課代數(shù)第五章不等式第一課時[知識要點]本章的知識要點包括:不等式、不等式的性質(zhì)、不等式的證明、不等式的解法、含有絕對值的不等式。這些知識點間和內(nèi)在
2024-11-30 12:27
【總結】二用數(shù)學歸納法證明不等式知識梳理(1)n2-1,x≠0,n為大于1的自然數(shù),那么有___________;當α是實數(shù),并且滿足α1或者α
2024-12-08 08:44
【總結】4-5不等式選講練習(一)——不等式1、已知0?a,0?b則不等式bxa???1的解是()DA.bxa11???B.bxa11???C.01???xb,或ax1?D.bx1??,或ax1?2、不等式ba?和ba11
2024-12-02 10:13
【總結】式用數(shù)學歸納法證明不等二.納法證明不等式歸進一步討論如何用數(shù)學下面我們結合具體例題.,,,,,,,,,:}{;,,,,,,,,,:}{.?,????????512256128643216842281644936251694112nnnnnbnaba證明你的結論小于從第幾項起觀察下面兩個數(shù)列例????
2024-11-17 17:34
【總結】絕對值不等式的解法2??????.,,,,,||;,,,,||,????????11111111即的點的集合數(shù)軸上到原點距離大于它的解集是由絕對值的幾何意義對于不等式即的點的集合小于點距離它的解集是數(shù)軸上到原幾何意義由絕對值的對于不等式我們知道xx.||;||,||,||,,
【總結】高中數(shù)學模塊教學選修系列4《不等式選講》專題課例《柯西不等式》主講人:山東師范大學附屬中學史宏偉數(shù)學是智能的一種形式,利用這種形式,我們可以把現(xiàn)象世界中的種種對象,置之于數(shù)量概念的控制之下。
2025-08-05 01:57
【總結】2020/12/24授課人:陳曉琳2020/12/24一、知識聯(lián)系1、絕對值的定義|x|=x,x0-x,x0-x
2024-11-17 12:00
【總結】一般形式的柯西不等式二????.,,,,,是三維的形式空間向量的坐標是二維形式平面上向量坐標我們知道zyxyx?,,么結論呢關于柯西不等式會有什問題從三維的角度思考聯(lián)系前一節(jié)的內(nèi)容思考xyo???21aa,???11bb,?xyo???321aaa,,???311bbb,,?
【總結】 第二節(jié) 不等式的證明 【知識重溫】 一、必記2個知識點 1.比較法 比較法是證明不等式最基本的方法,可分為作差比較法和作商比較法兩種. 名稱 作差比較法 作商比較法 理...
2025-04-03 03:34
【總結】第一篇:-新課標人教A版選修4-5不等式選講教學指導 2006年4月8日 在全省高中數(shù)學選修模塊教學研討會上對選修系列4教學指導研討的發(fā)言 吳公強 按照我省及寧夏回族自治區(qū)高中數(shù)學選修4專題系...
2024-11-16 23:34
【總結】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進行分類討論。解:∵解得方程兩根∴當時,解集為當時,不等式為,解集為當時,解集為例2
2025-04-04 05:10
【總結】柯西不等式?答案:及幾種變式.、b、c、d為實數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實數(shù),則.變式:或或.定理:設,則(當且僅當時取等號,假設)變式:.定理:設是兩個向量,則.等號成立?(是零向量,或者共線)練習:已知a、b、c、d為實數(shù),求證.
2025-04-04 05:05