【總結(jié)】完美WORD格式資料引言近年來,隨著市場經(jīng)濟的不斷發(fā)展、經(jīng)濟的不斷繁榮,經(jīng)濟活動中的實際問題也愈加復雜,簡單的分析已經(jīng)不足以滿足企業(yè)管理者對經(jīng)濟分析的需求。因此,有必要將高等數(shù)學應用于簡單的數(shù)學函數(shù)所不能解決的實際經(jīng)濟問題中,對其進行定量分析,這使得高等數(shù)學在解
2025-06-20 12:25
【總結(jié)】定理(極值第二判別法)0()0,xxfx???.)(,0)()1(00為極小值則若xfxf???.)(,0)()2(00為極大值則若xfxf???.)(,0)()3(00是否為極值則不能判斷若xfxf???證:(1)由導數(shù)定義,有000)()(lim)(0xxxfxfxfxx????
2025-05-14 02:52
【總結(jié)】極值點教學目的:、極小值的概念.、極小值的方法來求函數(shù)的極值.教學重點:極大、極小值的概念和判別方法,以及求可導函數(shù)的極值的步驟.教學難點:對極大、極小值概念的理解及求可導函數(shù)的極值的步驟授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀內(nèi)容分析:對極大、極小值概念的理
2024-11-20 00:26
【總結(jié)】考點函數(shù)與導數(shù)的綜合應用高考考綱透析:利用導數(shù)研究函數(shù)的單調(diào)性和極值、函數(shù)的最大值和最小值。高考風向標:函數(shù)與方程、不等式知識相結(jié)合是高考熱點與難點。利用分類討論的思想方法論證或判斷函數(shù)的單調(diào)性,函數(shù)的極值、最值,函數(shù)與導數(shù)的綜合題必是高考題中六個解答題之一。熱點題型1:導函數(shù)與恒不等式已知向量在區(qū)間(-1,1)上是增函數(shù),求t的取值范圍.解法
2025-04-16 23:39
【總結(jié)】導數(shù)應用:含參函數(shù)的單調(diào)性討論教師版一、思想方法:討論函數(shù)的單調(diào)區(qū)間可化歸為求解導函數(shù)正或負的相應不等式問題的討論。二、典例講解例1討論的單調(diào)性,求其單調(diào)區(qū)間解:的定義域為(它與同號)I)當時,恒成立,此時在和都是單調(diào)增函數(shù),即的增區(qū)間是和;II)當時此時在和都是單調(diào)增函數(shù)
【總結(jié)】第三章導數(shù)及其應用第12課時導數(shù)在研究函數(shù)中的應用教學目標:;能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間;、極小值;會用導數(shù)求函數(shù)的極大值、極小值;、最小值.教學重點:導數(shù)在研究函數(shù)中的應用教學難點:導數(shù)在研究函數(shù)中的應用教學過程:Ⅰ.回顧復習Ⅱ.基本訓練
2024-11-19 17:30
【總結(jié)】2020/12/2511)如果在某區(qū)間上f′(x)0,那么f(x)為該區(qū)間上的增函數(shù),2)如果在某區(qū)間上f′(x)0,那么f(x)為該區(qū)間上的減函數(shù)。一般地,設函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導數(shù)與函數(shù)的單調(diào)性的關系
2024-11-18 08:46
【總結(jié)】各專業(yè)全套優(yōu)秀畢業(yè)設計圖紙學科代碼:070101學號:080701010057貴州師范大學(本科)畢業(yè)論文
2025-07-16 19:13
【總結(jié)】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應用(函數(shù)的極值)導學案(無答案)蘇教版選修1-1一:學習目標1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與其導數(shù)的關系,并會靈活應用;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側(cè)異號)。二:課前預習1.函數(shù)a
2024-11-20 00:30
【總結(jié)】導數(shù)在研究函數(shù)中的應用單調(diào)性教學目的:;.教學重點:利用導數(shù)判斷函數(shù)單調(diào)性.教學難點:利用導數(shù)判斷函數(shù)單調(diào)性.授課類型:新授課課時安排:1課時.教具:多媒體、實物投影儀.內(nèi)容分析:以前,我們用定義來判斷函數(shù)的單調(diào)性.對于任意的兩個數(shù)x1,x2∈I,且當
2024-12-05 09:20
【總結(jié)】1§導數(shù)在經(jīng)濟學中的應用邊際和彈性是經(jīng)濟學中的兩個重要概念。用導數(shù)來研究經(jīng)濟變量的邊際與彈性的方法,稱之為邊際分析與彈性分析。一、邊際分析(離散的經(jīng)濟變量連續(xù)化)()fx?0x0()?fx1、定義8經(jīng)濟學中,把函數(shù)?(x)的導函數(shù)稱為?(x)
2024-10-09 14:57
【總結(jié)】測試成績:。恭喜您順利通過考試!單選題1.會議的開場白往往是會議中最關鍵的一部分。以下選項中,哪項不屬于做開場白的程序:√A提供與討論有關的資訊B和大家開開玩笑C規(guī)范會議的議程D指定會議記錄者正確答案:B2.一次會議中,主持人發(fā)言越多越好。該說法:√A正確B錯誤正確答案:B3.有時候與人溝通時,總有一些
2025-01-13 23:57
【總結(jié)】函數(shù)與導數(shù)1.已知函數(shù),其中.(Ⅰ)當時,求曲線在點處的切線方程;(Ⅱ)當時,求的單調(diào)區(qū)間;(Ⅲ)證明:對任意的在區(qū)間內(nèi)均存在零點.【解析】(19)本小題主要考查導數(shù)的幾何意義、利用導數(shù)研究函數(shù)的單調(diào)性、曲線的切線方程、函數(shù)的零點、解不等式等基礎知識,考查運算能力及分類討論的思想方法,滿分14分。(Ⅰ)解:當時, 所以曲線在點處的切線方程為
2025-06-18 20:37
【總結(jié)】《導數(shù)在實際生活中的應用》教案學習目標:1.通過生活中優(yōu)化問題的學習,體會導數(shù)在解決實際問題中的作用,促進學生全面認識數(shù)學的科學價值、應用價值和文化價值.2.通過實際問題的研究,促進學生分析問題、解決問題以及數(shù)學建模能力的提高.[來源:學科網(wǎng)]學習重難點:教學重點如何建立數(shù)學模型來解決實際問題教學難點如何建立數(shù)學模
2024-12-07 21:44
【總結(jié)】1導數(shù)的概念第三章導數(shù)與微分求導法則基本導數(shù)公式與高階導數(shù)函數(shù)的微分導數(shù)在經(jīng)濟學中的簡單應用5/27/20222導數(shù)在經(jīng)濟學中的簡單應用二、彈性一、邊際分析在經(jīng)濟與管理中常常要考慮產(chǎn)量、成本、利潤、收益、需求、供給等問題,通常成本、收益、利潤都是
2025-04-29 06:12