【總結(jié)】DEABC導(dǎo)數(shù)在實際生活中的應(yīng)用同步練習(xí)1.一點沿直線運動,如果由始點起經(jīng)過t秒后的距離為43215243sttt???,那么速度為零的時刻是()A.1秒末B.0秒C.4秒末D.0,1,4秒末2.某公司在
2024-12-05 09:29
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)復(fù)習(xí)回顧基本初等函數(shù)的求導(dǎo)公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2024-08-03 22:48
【總結(jié)】《導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用-單調(diào)性》教學(xué)目標(biāo)?原理;??教學(xué)重點:?利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.函數(shù)的單調(diào)性與導(dǎo)數(shù)情境設(shè)置探索研究演練反饋總結(jié)提煉作業(yè)布置創(chuàng)新升級oyxyox1oyx1xy1?122???
2024-11-18 12:15
【總結(jié)】2020/12/241導(dǎo)數(shù)在實際生活中的應(yīng)用2020/12/2421、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的
2024-11-17 23:31
【總結(jié)】2020/12/2511、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≥f(x0),則稱f(x0)為
2024-11-18 08:46
【總結(jié)】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時間掙到2萬元,乙用5個月時間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關(guān)于注水時間t的函數(shù),則下面兩個圖象哪一個可以表示上述函數(shù)?Ot/m
2024-11-17 15:20
【總結(jié)】導(dǎo)數(shù)及其應(yīng)用第一章導(dǎo)數(shù)的應(yīng)用第1課時利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性第一章課堂典例探究2課時作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)研究股票時,我們最關(guān)心的是股票的發(fā)展趨勢(走高或走低)以及股票價格的變化范圍(封頂或保底).從股票走勢曲線圖來看,股票有升有降.在數(shù)學(xué)上,函數(shù)曲線也有升有降,就是
2024-11-17 20:10
【總結(jié)】簡單復(fù)合函數(shù)的導(dǎo)數(shù)課時目標(biāo)能求形如f(ax+b)形式的復(fù)合函數(shù)的導(dǎo)數(shù).[來源:Z|xx|k.Com]復(fù)合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)).
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修1-1《導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用-單調(diào)性》審校:王偉教學(xué)目標(biāo)?原理;??教學(xué)重點:?利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.函數(shù)的單調(diào)性與導(dǎo)數(shù)情境設(shè)置探索研究演練反饋總結(jié)提煉作業(yè)布置創(chuàng)新升級oy
2024-11-24 14:05
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章第1課時利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性課時作業(yè)新人教B版選修2-2一、選擇題1.函數(shù)f(x)=(x-3)ex的單調(diào)增區(qū)間是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)[答案]D[解析]f′(x)
2024-12-03 11:28
【總結(jié)】導(dǎo)數(shù)的實際應(yīng)用【教學(xué)目標(biāo)】利用導(dǎo)數(shù)解決實際問題中的最優(yōu)化問題,掌握建立數(shù)學(xué)模型的方法,形成求解優(yōu)化問題的思路和方法.【教學(xué)重點】實際問題中的導(dǎo)數(shù)應(yīng)用【教學(xué)難點】數(shù)學(xué)建模一、課前預(yù)習(xí)::31頁例1、例2,總結(jié)利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的一般步驟:例1有一塊邊長為a的正方形鐵板,現(xiàn)從鐵板的四個角各截去一個相同的小正方
2024-12-03 11:30
【總結(jié)】§本課時欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.了解導(dǎo)數(shù)在解決實際問題中的作用.2.掌握利用導(dǎo)數(shù)解決簡單的實際生活中的優(yōu)化問題.【學(xué)法指導(dǎo)】1.在利用導(dǎo)數(shù)解決實際問題的過程中體會建模思想.2.感受導(dǎo)數(shù)知識在解決實際問題中的作
2024-11-18 08:07
【總結(jié)】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過程,能夠綜合運用導(dǎo)數(shù)公式和導(dǎo)數(shù)運算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運算法則和已學(xué)過的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類簡單函數(shù)的求導(dǎo)問題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2024-11-17 23:13
【總結(jié)】"福建省長樂第一中學(xué)2020高中數(shù)學(xué)第一章《函數(shù)的單調(diào)性與導(dǎo)數(shù)(2課時)》教案新人教A版選修2-2"教學(xué)目標(biāo):1.了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次;教學(xué)重點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間
2024-11-19 23:26
【總結(jié)】1.3.3最大值與最小值【學(xué)習(xí)要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導(dǎo)數(shù)求某定義域上函數(shù)的最值.【學(xué)法指導(dǎo)】弄清極值與最值的區(qū)別是學(xué)好本節(jié)的關(guān)鍵.函數(shù)的最值是一個整體性的概念.函數(shù)極值是在局部上對函數(shù)值的比較,具有相對性;而函數(shù)的最值則是表示函數(shù)在整個定義域上的情況,是對
2024-11-17 23:19