【總結(jié)】......專題三:含絕對(duì)值函數(shù)的最值問(wèn)題1.已知函數(shù)(),若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.不等式化為即:(*)對(duì)任意的恒成立因?yàn)?,所以分如下情況討論:[來(lái)源:學(xué)科網(wǎng)ZXXK]①當(dāng)時(shí),不等式(*)②當(dāng)
2025-03-24 23:42
【總結(jié)】導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值適用學(xué)科高中數(shù)學(xué)適用年級(jí)高中三年級(jí)適用區(qū)域通用課時(shí)時(shí)長(zhǎng)(分鐘)60知識(shí)點(diǎn)函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學(xué)目標(biāo)掌握函數(shù)的單調(diào)性求法,會(huì)求函數(shù)的函數(shù)的極值,會(huì)求解最值問(wèn)題,教學(xué)重點(diǎn)會(huì)利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性,會(huì)求解函數(shù)的最值。教學(xué)難點(diǎn)熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應(yīng)用
2025-07-26 05:39
【總結(jié)】精品資源第04講函數(shù)的極值與最值(一)知識(shí)歸納:1.極值:①定義:設(shè)函數(shù)f(x)在x0及附近有定義,如果對(duì)x0附近的所有點(diǎn)都有1)的一個(gè)極大值;2)的一個(gè)極小值.②函數(shù)f(x)的極值只可能在的點(diǎn)x0處(但必須有x0處左、右的導(dǎo)數(shù)值異號(hào))或不可導(dǎo)點(diǎn)x0處取得;若f(x0)是函數(shù)的一個(gè)極值,則f(x)在點(diǎn)x0處的圖象呈山峰狀(或山谷狀).2.最值
2025-06-29 15:33
【總結(jié)】已知f(x)=x3+ax2+bx+c在x=1與x=-23時(shí)都取得極值.(1)求a,b的值;(2)若f(-1)=32,求f(x)的單調(diào)區(qū)間和極值.例2【思路點(diǎn)撥】先求導(dǎo)數(shù)f′(x),再令f′(x)=0
2025-05-06 08:07
【總結(jié)】函數(shù)的極值和最值【考綱要求】。.。【知識(shí)網(wǎng)絡(luò)】函數(shù)極值的定義函數(shù)極值點(diǎn)條件函數(shù)的極值求函數(shù)極值函數(shù)的極值和最值函數(shù)在閉區(qū)間上的最大值和最小值【考點(diǎn)梳理】要點(diǎn)一、函數(shù)的極值函數(shù)的極值的定義一般地,設(shè)函數(shù)在點(diǎn)及其附近有定義,(1)若對(duì)于附近的所有點(diǎn),都有,則是函數(shù)的一個(gè)極大值,記作;(2)若對(duì)附近的所有
2025-06-16 04:08
【總結(jié)】第二章第三節(jié)函數(shù)的單調(diào)性與最值一、選擇題1.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( )A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|2.下列函數(shù)f(x)中,滿足“對(duì)任意x1,x2∈(0,+∞),當(dāng)x1f(x2)”的是( )A.f(x)=
2025-03-24 12:17
【總結(jié)】函數(shù)的單調(diào)性與最值一、知識(shí)梳理1.增函數(shù)、減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,區(qū)間D?I,如果對(duì)于任意x1,x2∈D,且x1f(x2).2.單調(diào)區(qū)間的定義若函數(shù)y=f(x)在區(qū)間D上是增函數(shù)或減函數(shù),則稱函數(shù)y=
【總結(jié)】函數(shù)的最大(?。┲蹬c導(dǎo)數(shù)石齊學(xué)校數(shù)學(xué)組:肖成鋼本節(jié)課的教學(xué)內(nèi)容選自人教社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(A版)數(shù)學(xué)選修1-1第三章第三節(jié)的《導(dǎo)數(shù)的應(yīng)用》,《函數(shù)的最大(?。┲蹬c導(dǎo)數(shù)》是第3課時(shí).教學(xué)內(nèi)容分析本節(jié)內(nèi)容是在學(xué)習(xí)了函數(shù)的極值與導(dǎo)數(shù)的基礎(chǔ)上學(xué)習(xí)函數(shù)的最大(?。┲蹬c導(dǎo)數(shù),所以需要注意極值與最值的關(guān)系,并根據(jù)極值和最值的關(guān)系來(lái)推導(dǎo)最值的存在和最值的求法。學(xué)法分析:學(xué)生在學(xué)
2025-04-16 23:39
【總結(jié)】精銳教育學(xué)科教師輔導(dǎo)講義學(xué)員編號(hào):年級(jí):高二課時(shí)數(shù):學(xué)員姓名:張欣蕾輔導(dǎo)科目:數(shù)學(xué)學(xué)科教師:李欣授課類型T導(dǎo)數(shù)與函數(shù)極值與最值CT
2025-05-16 08:26
【總結(jié)】精品資源第05講函數(shù)最值的應(yīng)用一、最值綜合與應(yīng)用問(wèn)題:(一)知識(shí)歸納:1.最值綜合問(wèn)題:這是中學(xué)數(shù)學(xué)最重要的題型之一,題型非常廣泛. ①幾何圖形的最值問(wèn)題:在平幾、立幾、解幾圖形中求解面積、體積、距離及各種幾何量的最大、最小值;②代數(shù)中的最值問(wèn)題:求解方程(或不等式)的最大、最小解,數(shù)列的最大、最小項(xiàng),變量或代數(shù)式的最大、最小取值,等等;2.最值應(yīng)用問(wèn)題:這是
2025-06-29 16:24
【總結(jié)】......典型中考題(有關(guān)二次函數(shù)的最值)屠園實(shí)驗(yàn)周前猛一、選擇題1.已知二次函數(shù)y=a(x-1)2++b有最小值–1,則a與b之間的大小關(guān)()A.ab=b
2025-03-24 06:26
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件13《函數(shù)的最值》知識(shí)網(wǎng)絡(luò)最值求解方法最值問(wèn)題常用解法最值綜合問(wèn)題最值應(yīng)用問(wèn)題“恒成立”問(wèn)題“存在”問(wèn)題:配方法,判別式法,代換法,不等式法,單調(diào)性法,數(shù)形結(jié)合法,三角函數(shù)有界法,反函數(shù)法。復(fù)習(xí)導(dǎo)引,
2024-11-11 02:54
【總結(jié)】二次函數(shù)的最值上節(jié)課,我們大膽假設(shè)存在一個(gè)新數(shù)i(叫做虛數(shù)單位).規(guī)定:①21i??;②i可以和實(shí)數(shù)進(jìn)行運(yùn)算,且原有的運(yùn)算律仍成立.1.復(fù)數(shù)(,)zabiabR???a─實(shí)部
2025-08-23 13:16
【總結(jié)】杭州大石教育暑假班初三數(shù)學(xué)1/42022年暑期班初三數(shù)學(xué)第2講二次函數(shù)的最值★二次函數(shù)y=ax2+bx+c頂點(diǎn)坐標(biāo)是,對(duì)稱軸是,,當(dāng)a>0
2025-01-07 16:45
【總結(jié)】利用函數(shù)的單調(diào)性(最值)求參數(shù)的取值范圍例1.已知函數(shù)),0()(2Raxxaxxf????,若)(xf在????,2上為增函數(shù),求實(shí)數(shù)a的取值范圍.跟蹤訓(xùn)練:1.已知函數(shù)????????,2),0()(2xaxaxxf上遞增,求實(shí)數(shù)a的取值范圍.2.若函數(shù)xxm
2024-11-09 06:38