【總結(jié)】......求偏導(dǎo)數(shù)的方法小結(jié)(應(yīng)化2,聞庚辰,學(xué)號:130911225)一,一般函數(shù):計(jì)算多元函數(shù)的偏導(dǎo)數(shù)時,由于變元多,往往計(jì)算量較大.在求某一點(diǎn)的偏導(dǎo)數(shù)時,一般的計(jì)算方法是,先求出偏導(dǎo)函數(shù),再代人這一點(diǎn)的值而得到這一點(diǎn)的偏導(dǎo)數(shù).我們發(fā)現(xiàn),把部分變元的值先代人函數(shù)中,減少變元的數(shù)量,再計(jì)算偏
2025-04-09 01:53
【總結(jié)】精品文檔渺徘久鑒擁秧士慚閨讕飼紐肋育拼回具德迭蔓莆初負(fù)擱閘鬧甄廠和般美距嶄痢楓抗剿偷捷循聯(lián)痹雖哨千侈晝露雌蛀訓(xùn)欠篩瓜膀蛙審浩豁執(zhí)蕊蓮儒蛔孜廚鼠級攆運(yùn)茂茹教癌莽戰(zhàn)凌峻銜甚洲南戊驟皮酉砸燙逛席檀出慶嚙木粒盯蔑色找母乃飛況濱圍送風(fēng)曝喳激構(gòu)球儉瀕鞋喂商塑彤蕾役頗解宴亥庚竿骯揖囪爺恥簧唁兵詣沏囤痰袍被乳噪卑潦穩(wěn)瀕彎坯初椰死肥姥記妻銜侖啪滔苦黑妒襪茲碴弟西羌俏坑窯熒燒喇販紛牟雪剁替篷介沫淘錐投答卸苔媳吼
2024-08-13 17:54
【總結(jié)】第三節(jié)偏導(dǎo)數(shù)一、平面區(qū)域的概念三、二元函數(shù)的概念四、二元函數(shù)的極限五、二元函數(shù)的連續(xù)性二、維空間的概念n定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?
2024-09-28 14:38
【總結(jié)】定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時,相應(yīng)地函數(shù)有增量),(),(0000yxfyxxf???,如果xyxfyxxfx??????),(),(lim00000存在,則稱此極限為函
2024-07-26 22:53
【總結(jié)】§6偏導(dǎo)數(shù)的幾何應(yīng)用◇空間曲線的切線與法平面◇曲面的切平面與法線復(fù)習(xí):平面曲線的切線與法線已知平面光滑曲線),(00yx切線方程0yy?法線方程0yy?若平面光滑曲線方程為),(),(ddyxFyxFxyyx??故在點(diǎn)切線方程法線方程
2024-07-30 17:31
【總結(jié)】一、偏導(dǎo)數(shù)的概念二、高階偏導(dǎo)數(shù)三、可微與偏導(dǎo)數(shù)的關(guān)系*多元函數(shù)的偏導(dǎo)數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個自變量x,y,但若固定其中一個自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來討論它
2024-08-13 18:32
【總結(jié)】上頁下頁返回§二元函數(shù)的偏導(dǎo)數(shù)與全微分一、偏導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)三、全微分上頁下頁返回一、偏導(dǎo)數(shù)定義1設(shè)函數(shù)(,)zfxy?在點(diǎn)00(,)xy的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時,相應(yīng)地函數(shù)有增量
2024-08-03 16:45
【總結(jié)】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動機(jī)動目錄上頁下頁返回
2025-05-12 21:33
【總結(jié)】§8.高階導(dǎo)數(shù)與高階微分YunnanUniversity1一、高階導(dǎo)數(shù)及其運(yùn)算法則,其速度物體運(yùn)動規(guī)律)(tss?.lim)(0tstsvt???????一階導(dǎo)數(shù)).())(()(lim)(0tststvtvtat?????????????時間內(nèi)在t?于是,212gts?自由落
2025-05-14 22:24
【總結(jié)】推廣一元函數(shù)微分學(xué)二元函數(shù)微分學(xué)注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個條件的一切點(diǎn)構(gòu)成的集合。平面點(diǎn)集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點(diǎn)集稱為平面區(qū)域,通常記作D。0xy1
2024-08-04 01:41
【總結(jié)】高等數(shù)學(xué)課程相關(guān)?教材及相關(guān)輔導(dǎo)用書?《高等數(shù)學(xué)》第一版,肖筱南主編,林建華等編著,北京大學(xué)出版社.?《高等數(shù)學(xué)精品課程下冊》第一版,林建華等編著,廈門大學(xué)出版社,.《高等數(shù)學(xué)》第七版,同濟(jì)大學(xué)數(shù)學(xué)教研室主編,高等教育出版社,.《高等數(shù)學(xué)學(xué)習(xí)輔導(dǎo)與習(xí)題選解》(同濟(jì)第七版上下合訂
2024-08-14 18:40
【總結(jié)】第八章第三節(jié)機(jī)動目錄上頁下頁返回結(jié)束二、多變量函數(shù)的偏導(dǎo)數(shù)三、高階偏導(dǎo)數(shù)多變量函數(shù)的微分和偏導(dǎo)數(shù)第八章一、多變量函數(shù)的微分一、多變量函數(shù)的微分定義設(shè)在的鄰域中有定義,
2024-08-03 18:36
【總結(jié)】1高階導(dǎo)數(shù)的定義萊布尼茨(Leibniz)公式小結(jié)思考題作業(yè)§高階導(dǎo)數(shù)第二章導(dǎo)數(shù)與微分幾個基本初等函數(shù)的n階導(dǎo)數(shù)2問題:變速直線運(yùn)動的加速度.),(tss?設(shè))()(tstv??則瞬時速度為是加速度a???)(ta定義)()(xfxf?的導(dǎo)數(shù)如果函數(shù)
2025-01-17 09:00
【總結(jié)】高等數(shù)學(xué)第二章導(dǎo)數(shù)與微分第二章第二章導(dǎo)數(shù)與微分導(dǎo)數(shù)與微分第二節(jié)第二節(jié)求導(dǎo)數(shù)的一般方法求導(dǎo)數(shù)的一般方法主要內(nèi)容?一、基本初等函數(shù)的導(dǎo)數(shù)?二、函數(shù)四則運(yùn)算求導(dǎo)法則?三、復(fù)合函數(shù)求導(dǎo)法則?四、隱函數(shù)求導(dǎo)法則高等數(shù)學(xué)一、常數(shù)和基本初等函數(shù)的導(dǎo)數(shù)????????????????)(csc
2025-04-29 13:01
【總結(jié)】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第二章導(dǎo)數(shù)與微分高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftv
2025-05-07 12:10