【總結(jié)】......數(shù)列通項公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項公式
2025-08-03 23:50
【總結(jié)】數(shù)列通項公式、求和的常見題型一、定義法例題1:(1)在數(shù)列{}中,若,,則=等差數(shù)列定義:公差,=n+5(2)在數(shù)列{}中,若,, 則=等比數(shù)列定義:公差,練習若數(shù)列的遞推公式為,則求這個數(shù)列的通項公式?! 。ǎ┒?、公式法已知數(shù)列的前項和與的關(guān)系,求數(shù)列的通項可用公式求解.例2.①
2025-06-26 05:29
【總結(jié)】緒論數(shù)列是中學(xué)數(shù)學(xué)的一項重要內(nèi)容,在中學(xué)數(shù)學(xué)體系中相對獨立,但有一定的綜合性和靈活性.高中數(shù)學(xué)中的數(shù)列知識主要涉及等差、等比數(shù)列的通項公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項公式是高中數(shù)學(xué)中最為常見的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學(xué)思想,又能反映中學(xué)生對等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學(xué)競賽和高考中.
2025-01-06 06:52
【總結(jié)】1求數(shù)列通項公式方法總結(jié)一、觀察法利用等差數(shù)列、等比數(shù)列的通項公式求解。例1.寫出下列數(shù)列的通項公式(1)?,3231,1615,87,43na=(2)?,71,51,31,1??na=(3)
2025-10-12 19:02
【總結(jié)】數(shù)列求和方法等差數(shù)列、等比數(shù)列的求和是高考??嫉膬?nèi)容之一,一般數(shù)列求和的基本思想是將其通項變形,化歸為等差數(shù)列或等比數(shù)列的求和問題,或利用代數(shù)式的對稱性,采用消元等方法來求和.下面我們結(jié)合具體實例來研究求和的方法.一、直接求和法(或公式法)將數(shù)列轉(zhuǎn)化為等差或等比數(shù)列,直接運用等差或等比數(shù)列的前n項和公式求得.例1求.解:原式. 由等差數(shù)列求和公式,得原式.二、
2025-07-23 16:03
【總結(jié)】主講老師:數(shù)列復(fù)習——通項公式基本概念如果數(shù)列{an}的第n項an與n之間的關(guān)系可以用一個公式來表示,這個公式就叫做這個數(shù)列的通項公式.數(shù)列的通項公式:數(shù)列的通項公式的求法例1.根據(jù)數(shù)列的前幾項,寫出下列數(shù)列的一個通項公式:;,72,114,
2025-10-31 01:17
【總結(jié)】數(shù)列的概念、通項公式和遞推公式期末復(fù)習一、數(shù)列的概念:數(shù)列.項是關(guān)于項數(shù)的一種特殊的函數(shù)關(guān)系,只是定義域是自小到大的正整數(shù)而已.:通項公式法,遞推公式法,前n項和法,和圖像法等.(圖像是自變量取正整數(shù)的一些孤立的點)二、數(shù)列的通項公式:???Nnnfananannn),(:.
2025-10-31 03:30
【總結(jié)】用不動點法求遞推數(shù)列(a2+c2≠0)的通項儲炳南(安徽省岳西中學(xué)246600)1.通項的求法為了求出遞推數(shù)列的通項,我們先給出如下兩個定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動點方程,其根稱為函數(shù)的不動點.下面分兩種情況給出遞推數(shù)列通項的求解通法.(1)當c=0,時,由,記,,則有(k≠0),∴數(shù)列
2025-06-23 14:23
【總結(jié)】......求數(shù)列通項公式一、公式法 類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿足,,求數(shù)列的通項公式。 解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差
2025-03-25 02:53
【總結(jié)】......環(huán)球雅思學(xué)科教師輔導(dǎo)學(xué)案輔導(dǎo)科目:數(shù)學(xué)年級:高一學(xué)科教師:課時數(shù):3授課類型等差數(shù)列與通項公式教學(xué)目的掌
2025-06-25 04:00
【總結(jié)】數(shù)列通項公式的求法一、近6年全國卷(2009——2014)求數(shù)列通項公式的試題概覽年份試題特點或已知條件類型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關(guān)系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標累加法2011新課標是等比數(shù)列,定義法,2012全國卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-06-26 05:32
【總結(jié)】:——直接利用等差或等比數(shù)列的定義求通項。特征:適應(yīng)于已知數(shù)列類型(等差或者等比).例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式.變式練習:,求的通項公式2.在等比數(shù)列中,,且為和的等差中項,求數(shù)列的首項、公比及前項和.求數(shù)列的通項可用公式求解。特征:
2025-06-17 07:01
【總結(jié)】數(shù)列通項的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點,因而在歷年的高考試題中占有較大的比重,在這類問題中,求數(shù)列的通項往往是解題的突破口、關(guān)鍵點。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項之間的結(jié)構(gòu),縱向看各項與項數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡單、特殊的數(shù)列。例1寫出下列數(shù)列的一
2025-01-08 14:05
【總結(jié)】課時序號:36重點:1、理解數(shù)列通項公式的意義,掌握等差、等比數(shù)列的通項公式的求法;2、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項公式.3、掌握數(shù)列通項公式的常用方法:公式法、累加法、累乘法、輔助數(shù)列法等等難點:1、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項公式.2、掌握數(shù)列通項公式的常用方法:公式法、累加法、累乘法、迭代
2025-04-30 18:12
【總結(jié)】數(shù)列的通項公式:是一個數(shù)列的第n項(即an)與項數(shù)n之間的函數(shù)關(guān)系注:①有的數(shù)列沒有通項公式,如:3,π,e,6;②有的數(shù)列有多個通項公式,如:???nanncos1???下面談一談數(shù)列通項公式的常用求法:一、觀察法(又叫猜想法,不完全歸納法):觀察數(shù)列中各項與其序號間的關(guān)系,分
2025-05-07 02:09